These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 8003973)
1. The importance of anchorage in determining a strained protein loop conformation. Hodel A; Kautz RA; Adelman DM; Fox RO Protein Sci; 1994 Apr; 3(4):549-56. PubMed ID: 8003973 [TBL] [Abstract][Full Text] [Related]
2. Stabilization of a strained protein loop conformation through protein engineering. Hodel A; Kautz RA; Fox RO Protein Sci; 1995 Mar; 4(3):484-95. PubMed ID: 7795531 [TBL] [Abstract][Full Text] [Related]
3. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease. Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915 [TBL] [Abstract][Full Text] [Related]
4. Stress and strain in staphylococcal nuclease. Hodel A; Kautz RA; Jacobs MD; Fox RO Protein Sci; 1993 May; 2(5):838-50. PubMed ID: 8495201 [TBL] [Abstract][Full Text] [Related]
5. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics. Song J; Laskowski M; Qasim MA; Markley JL Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219 [TBL] [Abstract][Full Text] [Related]
6. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease. Patel S; Sasidhar YU J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022 [TBL] [Abstract][Full Text] [Related]
7. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease. Shan L; Tong Y; Xie T; Wang M; Wang J Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731 [TBL] [Abstract][Full Text] [Related]
8. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease. Raleigh DP; Evans PA; Pitkeathly M; Dobson CM J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444 [TBL] [Abstract][Full Text] [Related]
9. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations. Hodel A; Rice LM; Simonson T; Fox RO; Brünger AT Protein Sci; 1995 Apr; 4(4):636-54. PubMed ID: 7613463 [TBL] [Abstract][Full Text] [Related]
10. A fragment of staphylococcal nuclease with an OB-fold structure shows hydrogen-exchange protection factors in the range reported for "molten globules". Alexandrescu AT; Dames SA; Wiltscheck R Protein Sci; 1996 Sep; 5(9):1942-6. PubMed ID: 8880922 [TBL] [Abstract][Full Text] [Related]
11. Role of Asn(2) and Glu(7) residues in the oxidative folding and on the conformation of the N-terminal loop of apamin. Le-Nguyen D; Chiche L; Hoh F; Martin-Eauclaire MF; Dumas C; Nishi Y; Kobayashi Y; Aumelas A Biopolymers; 2007 Aug 5-15; 86(5-6):447-62. PubMed ID: 17486576 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Hynes TR; Fox RO Proteins; 1991; 10(2):92-105. PubMed ID: 1896431 [TBL] [Abstract][Full Text] [Related]
13. NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117. Hinck AP; Eberhardt ES; Markley JL Biochemistry; 1993 Nov; 32(44):11810-8. PubMed ID: 8218252 [TBL] [Abstract][Full Text] [Related]
14. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations. Ikura T; Tsurupa GP; Kuwajima K Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370 [TBL] [Abstract][Full Text] [Related]
15. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Royer CA; Hinck AP; Loh SN; Prehoda KE; Peng X; Jonas J; Markley JL Biochemistry; 1993 May; 32(19):5222-32. PubMed ID: 8494899 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics study of water penetration in staphylococcal nuclease. Damjanović A; García-Moreno B; Lattman EE; García AE Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206 [TBL] [Abstract][Full Text] [Related]
17. Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Castañeda CA; Fitch CA; Majumdar A; Khangulov V; Schlessman JL; García-Moreno BE Proteins; 2009 Nov; 77(3):570-88. PubMed ID: 19533744 [TBL] [Abstract][Full Text] [Related]
18. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein. Hinck AP; Truckses DM; Markley JL Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding. Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease. Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]