BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8005096)

  • 1. Intracellular sites involved in the biogenesis of bile canaliculi in hepatic cells.
    Zaal KJ; Kok JW; Sormunen R; Eskelinen S; Hoekstra D
    Eur J Cell Biol; 1994 Feb; 63(1):10-9. PubMed ID: 8005096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Golgi Structure and Function in Health, Stress, and Diseases.
    Li J; Ahat E; Wang Y
    Results Probl Cell Differ; 2019; 67():441-485. PubMed ID: 31435807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-cell observation of ZIO-stained Golgi apparatus in rat hepatocytes with serial block-face scanning electron microscope, SBF-SEM.
    Johkura K; Usuda N; Tanaka Y; Fukasawa M; Murata K; Noda T; Ohno N
    Microscopy (Oxf); 2022 Oct; 71(5):262-270. PubMed ID: 35535544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine oxidase promotes bile canalicular lumen formation through acrolein production.
    Uemura T; Takasaka T; Igarashi K; Ikegaya H
    Sci Rep; 2017 Nov; 7(1):14841. PubMed ID: 29093526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation.
    Casey CA; Bhat G; Holzapfel MS; Petrosyan A
    Alcohol Clin Exp Res; 2016 Dec; 40(12):2573-2590. PubMed ID: 27748959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of endocytic pathways in liver function and disease.
    Schroeder B; McNiven MA
    Compr Physiol; 2014 Oct; 4(4):1403-17. PubMed ID: 25428849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte polarity.
    Treyer A; Müsch A
    Compr Physiol; 2013 Jan; 3(1):243-87. PubMed ID: 23720287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na+/H+ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells.
    Ohgaki R; Matsushita M; Kanazawa H; Ogihara S; Hoekstra D; van Ijzendoorn SC
    Mol Biol Cell; 2010 Apr; 21(7):1293-304. PubMed ID: 20130086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vectorial entry and release of hepatitis A virus in polarized human hepatocytes.
    Snooks MJ; Bhat P; Mackenzie J; Counihan NA; Vaughan N; Anderson DA
    J Virol; 2008 Sep; 82(17):8733-42. PubMed ID: 18579610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions.
    Théard D; Steiner M; Kalicharan D; Hoekstra D; van Ijzendoorn SC
    Mol Biol Cell; 2007 Jun; 18(6):2313-21. PubMed ID: 17429067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide.
    Wojtal KA; de Vries E; Hoekstra D; van Ijzendoorn SC
    Mol Biol Cell; 2006 Aug; 17(8):3638-50. PubMed ID: 16723498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rho kinase, myosin-II, and p42/44 MAPK control extracellular matrix-mediated apical bile canalicular lumen morphogenesis in HepG2 cells.
    Herrema H; Czajkowska D; Théard D; van der Wouden JM; Kalicharan D; Zolghadr B; Hoekstra D; van Ijzendoorn SC
    Mol Biol Cell; 2006 Jul; 17(7):3291-303. PubMed ID: 16687572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms.
    Tuma PL; Nyasae LK; Hubbard AL
    Mol Biol Cell; 2002 Oct; 13(10):3400-15. PubMed ID: 12388745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized sphingolipid transport from the subapical compartment changes during cell polarity development.
    van IJzendoorn SC; Hoekstra D
    Mol Biol Cell; 2000 Mar; 11(3):1093-101. PubMed ID: 10712522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells.
    Zegers MM; Hoekstra D
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):257-69. PubMed ID: 9820799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids.
    van IJzendoorn SC; Hoekstra D
    J Cell Biol; 1998 Aug; 142(3):683-96. PubMed ID: 9700158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells.
    Zegers MM; Zaal KJ; van IJzendoorn SC; Klappe K; Hoekstra D
    Mol Biol Cell; 1998 Jul; 9(7):1939-49. PubMed ID: 9658181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes.
    Ihrke G; Martin GV; Shanks MR; Schrader M; Schroer TA; Hubbard AL
    J Cell Biol; 1998 Apr; 141(1):115-33. PubMed ID: 9531552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells.
    Zegers MM; Hoekstra D
    J Cell Biol; 1997 Jul; 138(2):307-21. PubMed ID: 9230073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells.
    van IJzendoorn SC; Zegers MM; Kok JW; Hoekstra D
    J Cell Biol; 1997 Apr; 137(2):347-57. PubMed ID: 9128247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.