BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8005887)

  • 21. Arterial flow measurements during reactive hyperemia using NIRS.
    Harel F; Olamaei N; Ngo Q; Dupuis J; Khairy P
    Physiol Meas; 2008 Sep; 29(9):1033-40. PubMed ID: 18698112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of the reactive hyperemic response in the forearm due to local hand cooling.
    Kilgour RD; Carranza A; Findlay R
    Aviat Space Environ Med; 1997 Jan; 68(1):46-50. PubMed ID: 9006882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy.
    De Blasi RA; Cope M; Elwell C; Safoue F; Ferrari M
    Eur J Appl Physiol Occup Physiol; 1993; 67(1):20-5. PubMed ID: 8375359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near infrared spectroscopy for noninvasive assessment of claudication.
    Kooijman HM; Hopman MT; Colier WN; van der Vliet JA; Oeseburg B
    J Surg Res; 1997 Sep; 72(1):1-7. PubMed ID: 9344707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy.
    Edwards AD; Richardson C; van der Zee P; Elwell C; Wyatt JS; Cope M; Delpy DT; Reynolds EO
    J Appl Physiol (1985); 1993 Oct; 75(4):1884-9. PubMed ID: 8282646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of muscle blood flow and O
    Dennis JJ; Wiggins CC; Smith JR; Isautier JMJ; Johnson BD; Joyner MJ; Cross TJ
    Sci Rep; 2021 Jan; 11(1):918. PubMed ID: 33441688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of oxygen consumption in muscle during exercise using near infrared spectroscopy.
    Colier WN; Meeuwsen IB; Degens H; Oeseburg B
    Acta Anaesthesiol Scand Suppl; 1995; 107():151-5. PubMed ID: 8599269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.
    Richards JC; Crecelius AR; Kirby BS; Larson DG; Dinenno FA
    Exp Physiol; 2012 Jun; 97(6):750-61. PubMed ID: 22327330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Forearm and calf tissue oxygenation in term neonates measured with near-infrared spectroscopy.
    Pichler G; Heinzinger J; Kutschera J; Zotter H; Müller W; Urlesberger B
    J Physiol Sci; 2007 Oct; 57(5):317-9. PubMed ID: 17916280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative measurement of oxygen consumption and forearm blood flow in patients with mitochondrial myopathies.
    Van Beekvelt MC; Colier WN; Wevers RA; Van Engelen BG
    Adv Exp Med Biol; 1999; 471():313-9. PubMed ID: 10659162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prostaglandin contribution to postexercise hyperemia is dependent on tissue oxygenation during rhythmic and isometric contractions.
    Junejo RT; Ray CJ; Marshall JM
    Physiol Rep; 2020 Jun; 8(12):e14471. PubMed ID: 32562377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional specificity of peak hyperemic response in patients with congestive heart failure: correlation with peak aerobic capacity.
    Jondeau G; Katz SD; Toussaint JF; Dubourg O; Monrad ES; Bourdarias JP; LeJemtel TH
    J Am Coll Cardiol; 1993 Nov; 22(5):1399-402. PubMed ID: 8227797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of venous occlusion per se on forearm muscle blood flow: implications for the near-infrared spectroscopy venous occlusion technique.
    Cross TJ; Sabapathy S
    Clin Physiol Funct Imaging; 2017 May; 37(3):293-298. PubMed ID: 26427913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of euglucaemic hyperinsulinaemia on forearm blood flow and glucose uptake in the human forearm.
    Fugmann A; Lind L; Andersson PE; Millgård J; Hänni A; Berne C; Lithell H
    Acta Diabetol; 1998 Dec; 35(4):203-6. PubMed ID: 9934819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Failure of impedance plethysmography to follow exercise-induced changes in limb blood flow.
    Hughson RL
    Clin Sci (Lond); 1988 Jul; 75(1):41-6. PubMed ID: 3409623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radionuclide plethysmography for noninvasive evaluation of peripheral arterial blood flow.
    Harel F; Dupuis J; Benelfassi A; Ruel N; Grégoire J
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H258-62. PubMed ID: 15734880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing skeletal muscle variations in microvascular pressure and unstressed blood volume at the bedside.
    De Blasi RA; Arcioni R
    Microcirculation; 2014 Oct; 21(7):606-14. PubMed ID: 24702908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cuff inflation time significantly affects blood flow recorded with venous occlusion plethysmography.
    Junejo RT; Ray CJ; Marshall JM
    Eur J Appl Physiol; 2019 Mar; 119(3):665-674. PubMed ID: 30617468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local and remote thermoregulatory changes affect NIRS measurement in forearm muscles.
    Messere A; Roatta S
    Eur J Appl Physiol; 2015 Nov; 115(11):2281-91. PubMed ID: 26142276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.