These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8006007)

  • 1. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I.
    Norioka S; Ohta S; Ohara T; Lim SI; Sakiyama F
    J Biol Chem; 1994 Jun; 269(25):17025-9. PubMed ID: 8006007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of an imidazole-indole stack to high catalytic potency of a lysine-specific serine protease, Achromobacter protease I.
    Shiraki K; Norioka S; Li S; Sakiyama F
    J Biochem; 2002 Feb; 131(2):213-8. PubMed ID: 11820934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease.
    Tsunasawa S; Masaki T; Hirose M; Soejima M; Sakiyama F
    J Biol Chem; 1989 Mar; 264(7):3832-9. PubMed ID: 2492988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation.
    Traidej M; Marquart ME; Caballero AR; Thibodeaux BA; O'Callaghan RJ
    J Biol Chem; 2003 Jan; 278(4):2549-53. PubMed ID: 12419815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene.
    Ohara T; Makino K; Shinagawa H; Nakata A; Norioka S; Sakiyama F
    J Biol Chem; 1989 Dec; 264(34):20625-31. PubMed ID: 2684982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic role of the active site aspartic acid in serine proteases.
    Craik CS; Roczniak S; Largman C; Rutter WJ
    Science; 1987 Aug; 237(4817):909-13. PubMed ID: 3303334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad.
    Shin S; Yun YS; Koo HM; Kim YS; Choi KY; Oh BH
    J Biol Chem; 2003 Jul; 278(27):24937-43. PubMed ID: 12711609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Pseudomonas aeruginosa Small Protease (PASP), a Corneal Virulence Factor.
    Tang A; Caballero AR; Marquart ME; Bierdeman MA; O'Callaghan RJ
    Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):5993-6002. PubMed ID: 30572344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaching the conformational integrity of the catalytic triad of the serine protease plasmin: localized disruption of a side chain of His-603 strongly inhibits the amidolytic activity of human plasmin.
    Mhashilkar AM; Viswanatha T; Chibber BA; Castellino FJ
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5374-7. PubMed ID: 8506386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innate antibody catalysis.
    Gololobov G; Sun M; Paul S
    Mol Immunol; 1999 Dec; 36(18):1215-22. PubMed ID: 10684961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-based modeling of the serine protease triad into non-proteases.
    Iengar P; Ramakrishnan C
    Protein Eng; 1999 Aug; 12(8):649-56. PubMed ID: 10469825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
    Ekici OD; Paetzel M; Dalbey RE
    Protein Sci; 2008 Dec; 17(12):2023-37. PubMed ID: 18824507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of active site residues of the Tsp protease.
    Keiler KC; Sauer RT
    J Biol Chem; 1995 Dec; 270(48):28864-8. PubMed ID: 7499412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I.
    Shiraki K; Norioka S; Li S; Yokota K; Sakiyama F
    Eur J Biochem; 2002 Aug; 269(16):4152-8. PubMed ID: 12180992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241.
    Emmerich J; Beg OU; Peterson J; Previato L; Brunzell JD; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 1992 Feb; 267(6):4161-5. PubMed ID: 1371284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and nucleotide sequence of the beta-lytic protease gene from Achromobacter lyticus.
    Li SL; Norioka S; Sakiyama F
    J Bacteriol; 1990 Nov; 172(11):6506-11. PubMed ID: 2228973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases.
    Snijder EJ; Wassenaar AL; van Dinten LC; Spaan WJ; Gorbalenya AE
    J Biol Chem; 1996 Mar; 271(9):4864-71. PubMed ID: 8617757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysyl endopeptidase of Achromobacter lyticus.
    Sakiyama F; Masaki T
    Methods Enzymol; 1994; 244():126-37. PubMed ID: 7845202
    [No Abstract]   [Full Text] [Related]  

  • 19. Asp 280 residue is important in the activity of the Escherichia coli leader peptidase.
    Sung M; Park K
    Exp Mol Med; 1999 Jun; 31(2):64-9. PubMed ID: 10410304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro proteolytic activity and active-site identification of the human cytomegalovirus protease.
    Stevens JT; Mapelli C; Tsao J; Hail M; O'Boyle D; Weinheimer SP; Diianni CL
    Eur J Biochem; 1994 Dec; 226(2):361-7. PubMed ID: 8001553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.