These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8006721)

  • 1. Spectral sharpening: sensor transformations for improved color constancy.
    Finlayson GD; Drew MS; Funt BV
    J Opt Soc Am A Opt Image Sci Vis; 1994 May; 11(5):1553-63. PubMed ID: 8006721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new spectrally sharpened sensor basis to predict color naming, unique hues, and hue cancellation.
    Vazquez-Corral J; O'Regan JK; Vanrell M; Finlayson GD
    J Vis; 2012 Jun; 12(6):7. PubMed ID: 22665457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biological significance of color constancy: an agent-based model with bees foraging from flowers under varied illumination.
    Faruq S; McOwan PW; Chittka L
    J Vis; 2013 Aug; 13(10):. PubMed ID: 23962735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces.
    D'Zmura M; Iverson G
    J Opt Soc Am A Opt Image Sci Vis; 1993 Oct; 10(10):2166-80. PubMed ID: 8229354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral sharpening with positivity.
    Drew MS; Finlayson GD
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1361-70. PubMed ID: 10935863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual system-response functions and estimating reflectance.
    van Trigt C
    J Opt Soc Am A Opt Image Sci Vis; 1997 Apr; 14(4):741-55. PubMed ID: 9088087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces.
    D'Zmura M; Iverson G
    J Opt Soc Am A Opt Image Sci Vis; 1993 Oct; 10(10):2148-65. PubMed ID: 8229353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black light: how sensors filter spectral variation of the illuminant.
    Brainard DH; Wandell BA; Cowan WB
    IEEE Trans Biomed Eng; 1989 Jan; 36(1):140-9. PubMed ID: 2921060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational approaches to color constancy: adaptive and ontogenetic considerations.
    Dannemiller JL
    Psychol Rev; 1989 Apr; 96(2):255-66. PubMed ID: 2710875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral sharpening of color sensors: diagonal color constancy and beyond.
    Vazquez-Corral J; Bertalmío M
    Sensors (Basel); 2014 Feb; 14(3):3965-85. PubMed ID: 24577523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous color constancy: how surface color perception varies with the illuminant.
    Bäuml KH
    Vision Res; 1999 Apr; 39(8):1531-50. PubMed ID: 10343819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral sharpening by spherical sampling.
    Finlayson GD; Vazquez-Corral J; Süsstrunk S; Vanrell M
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1199-210. PubMed ID: 22751384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces.
    D'Zmura M; Iverson G
    J Opt Soc Am A Opt Image Sci Vis; 1994 Sep; 11(9):2398-400. PubMed ID: 7931764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor sharpening for computational color constancy.
    Barnard K; Ciurea F; Funt B
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2728-43. PubMed ID: 11688863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the retinex theory of color vision.
    Brainard DH; Wandell BA
    J Opt Soc Am A; 1986 Oct; 3(10):1651-61. PubMed ID: 3772627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast.
    Lucassen MP; Walraven J
    Vision Res; 1993; 33(5-6):739-57. PubMed ID: 8351846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor.
    Johnsen S; Kelber A; Warrant E; Sweeney AM; Widder EA; Lee RL; Hernández-Andrés J
    J Exp Biol; 2006 Mar; 209(Pt 5):789-800. PubMed ID: 16481568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color constancy under natural and artificial illumination.
    Lucassen MP; Walraven J
    Vision Res; 1996 Sep; 36(17):2699-711. PubMed ID: 8917757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy.
    Kulikowski JJ; Daugirdiene A; Panorgias A; Stanikunas R; Vaitkevicius H; Murray IJ
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A275-89. PubMed ID: 22330390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum sensors for color constancy in scenes illuminated by daylight.
    Ratnasingam S; Collins S; Hernández-Andrés J
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2198-207. PubMed ID: 20922010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.