BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8006740)

  • 1. Biomechanical rationale for surgical-orthodontic expansion of the adult maxilla.
    Shetty V; Caridad JM; Caputo AA; Chaconas SJ
    J Oral Maxillofac Surg; 1994 Jul; 52(7):742-9; discussion 750-1. PubMed ID: 8006740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical rationale for surgically facilitated expansion of the maxilla in the cleft palate patient.
    Kusakabe T; Caputo AA; Shetty V; Iida J
    World J Orthod; 2007; 8(2):167-73. PubMed ID: 17580511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis.
    Lee SC; Park JH; Bayome M; Kim KB; Araujo EA; Kook YA
    Am J Orthod Dentofacial Orthop; 2014 May; 145(5):638-48. PubMed ID: 24785928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maxillary protraction with and without maxillary expansion: a finite element analysis of sutural stresses.
    Gautam P; Valiathan A; Adhikari R
    Am J Orthod Dentofacial Orthop; 2009 Sep; 136(3):361-6. PubMed ID: 19732670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of orthopedic force distribution produced by maxillary orthodontic appliances.
    Chaconas SJ; Caputo AA
    Am J Orthod; 1982 Dec; 82(6):492-501. PubMed ID: 6760725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical effects of rapid palatal expansion on the craniofacial skeleton with cleft palate: a three-dimensional finite element analysis.
    Pan X; Qian Y; Yu J; Wang D; Tang Y; Shen G
    Cleft Palate Craniofac J; 2007 Mar; 44(2):149-54. PubMed ID: 17328641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of three-dimensional stress distribution and displacement of naso-maxillary complex on application of forces using quad-helix and nickel titanium palatal expander 2 (NPE2): a FEM study.
    Kumar A; Ghafoor H; Khanam A
    Prog Orthod; 2016 Dec; 17(1):17. PubMed ID: 27245236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of bone stress after SARPE.
    de Assis DS; Xavier TA; Noritomi PY; Gonçales ES
    J Oral Maxillofac Surg; 2014 Jan; 72(1):167.e1-7. PubMed ID: 23945516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex--a finite element method (FEM) analysis.
    MacGinnis M; Chu H; Youssef G; Wu KW; Machado AW; Moon W
    Prog Orthod; 2014 Aug; 15(1):52. PubMed ID: 25242527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress and displacement between maxillary protraction with miniplates placed at the infrazygomatic crest and the lateral nasal wall: a 3-dimensional finite element analysis.
    Lee NK; Baek SH
    Am J Orthod Dentofacial Orthop; 2012 Mar; 141(3):345-351. PubMed ID: 22381495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sutural strain in orthopedic headgear therapy: a finite element analysis.
    Holberg C; Holberg N; Rudzki-Janson I
    Am J Orthod Dentofacial Orthop; 2008 Jul; 134(1):53-9. PubMed ID: 18617103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical-orthodontic correction of transverse maxillary deficiency.
    Lehman JA; Haas AJ
    Dent Clin North Am; 1990 Apr; 34(2):385-95. PubMed ID: 2186940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse effects after surgically assisted rapid maxillary expansion in the midpalatal suture using computed tomography.
    Loddi PP; Pereira MD; Wolosker AB; Hino CT; Kreniski TM; Ferreira LM
    J Craniofac Surg; 2008 Mar; 19(2):433-8. PubMed ID: 18362722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of stress distribution in anchor teeth in surgically assisted rapid palatal expansion.
    de Assis DS; Xavier TA; Noritomi PY; Gonçales AG; Ferreira O; de Carvalho PC; Gonçales ES
    Int J Oral Maxillofac Surg; 2013 Sep; 42(9):1093-9. PubMed ID: 23684813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress distribution produced by correction of the maxillary second molar in buccal crossbite.
    Yoon YJ; Jang SH; Hwang GW; Kim KW
    Angle Orthod; 2002 Oct; 72(5):397-401. PubMed ID: 12401047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement and stress distribution of the maxillofacial complex during maxillary protraction with buccal versus palatal plates: finite element analysis.
    Kim KY; Bayome M; Park JH; Kim KB; Mo SS; Kook YA
    Eur J Orthod; 2015 Jun; 37(3):275-83. PubMed ID: 25090997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress and displacement pattern evaluation using two different palatal expanders in unilateral cleft lip and palate: a three-dimensional finite element analysis.
    Mathew A; Nagachandran KS; Vijayalakshmi D
    Prog Orthod; 2016 Dec; 17(1):38. PubMed ID: 27800592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional finite element analysis of maxillary protraction with labiolingual arches and implants.
    Liu C; Zhu X; Zhang X
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):466-78. PubMed ID: 26321345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of stress by finite element analysis of the midface and skull base at the time of midpalatal osteotomy in models with or without pterygomaxillary dysjunction.
    Esen A; Soganci E; Dolanmaz E; Dolanmaz D
    Br J Oral Maxillofac Surg; 2018 Apr; 56(3):177-181. PubMed ID: 29395452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of midpalatal suture opening after surgically assisted rapid maxillary expansion using computed tomography.
    Pereira MD; Prado GP; Abramoff MM; Aloise AC; Masako Ferreira L
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Jul; 110(1):41-5. PubMed ID: 20417136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.