These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8007776)

  • 1. Preliminary results of a modified surface rendering technique in the display of magnetic resonance angiography images.
    Shapiro LB; Tien RD; Golding SJ; Tötterman SM
    Magn Reson Imaging; 1994; 12(3):461-8. PubMed ID: 8007776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography.
    Heo YC; Lee HK; Yang HJ; Cho JH
    J Med Syst; 2014 Dec; 38(12):146. PubMed ID: 25352491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR angiography of the head and neck: value of two-dimensional phase-contrast projection technique.
    Applegate GR; Talagala SL; Applegate LJ
    AJR Am J Roentgenol; 1992 Aug; 159(2):369-74. PubMed ID: 1632359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D time-of-flight MR angiography using concatenated saturation bands for determining direction of flow in the intracranial vessels.
    Nesbit GM; DeMarco JK
    Neuroradiology; 1997 Jul; 39(7):461-8. PubMed ID: 9258920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review.
    Tsui YK; Tsai FY; Hasso AN; Greensite F; Nguyen BV
    J Neurol Sci; 2009 Dec; 287(1-2):7-16. PubMed ID: 19772973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional display of cortical anatomy and vasculature: magnetic resonance angiography versus multimodality integration.
    Henri CJ; Pike GB; Collins DL; Peters TM
    J Digit Imaging; 1991 Feb; 4(1):21-7. PubMed ID: 2029569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved visualization of intracranial vessels by gradient moment nulling in hybrid of opposite-contrast magnetic resonance angiography (HOP MRA).
    Azuma T; Kodama T; Yano T; Suzuki M; Kimura T; Tamaribuchi Y
    Magn Reson Med Sci; 2010; 9(3):159-65. PubMed ID: 20885090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T.
    Willinek WA; Gieseke J; von Falkenhausen M; Born M; Hadizadeh D; Manka C; Textor HJ; Schild HH; Kuhl CK
    Rofo; 2004 Jan; 176(1):21-6. PubMed ID: 14712403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between the hemodynamic changes on multi-Td pulsed arterial spin labeling images and the degrees of cerebral artery stenosis.
    Chen J; Zhao B; Bu C; Xie G
    Magn Reson Imaging; 2014 Dec; 32(10):1277-83. PubMed ID: 25171819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Diagnosis of renal artery stenosis with magnetic resonance angiography and stenosis quantification].
    Marchand B; Hernandez-Hoyos M; Orkisz M; Douek P
    J Mal Vasc; 2000 Dec; 25(5):312-320. PubMed ID: 11148391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography.
    Tanaka H; Numaguchi Y; Konno S; Shrier DA; Shibata DK; Patel U
    J Comput Assist Tomogr; 1997; 21(5):811-7. PubMed ID: 9294581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Usefulness of 3-dimensional image analysis of skull base lesions].
    Kobayashi M; Ohira T; Ishihara M; Nakamura A; Gotoh K; Kawase T; Shiobara R; Toya S; Shiga I
    No Shinkei Geka; 1995 Sep; 23(9):779-86. PubMed ID: 7566424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated local maximum-intensity projection with three-dimensional vessel tracking.
    Lin W; Haacke EM; Masaryk TJ; Smith AS
    J Magn Reson Imaging; 1992; 2(5):519-26. PubMed ID: 1392244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional time-of-flight MR angiography in the evaluation of cerebral aneurysms.
    Sevick RJ; Tsuruda JS; Schmalbrock P
    J Comput Assist Tomogr; 1990; 14(6):874-81. PubMed ID: 2229560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall imaging of cerebral aneurysms with a modified surface-rendering technique of spiral CT.
    Hashimoto H; Lida J; Hironaka Y; Shin Y; Sakaki T
    Acta Neurochir (Wien); 2000; 142(9):1003-12. PubMed ID: 11086809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracranial magnetic resonance imaging.
    Ruggieri PM; Masaryk TJ; Ross JS; Modic MT
    Invest Radiol; 1992 Dec; 27 Suppl 2():S33-9. PubMed ID: 1468873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
    Deng X; Zhang Z; Zhang Y; Zhang D; Wang R; Ye X; Xu L; Wang B; Wang K; Zhao J
    J Neurosurg; 2016 Jun; 124(6):1716-25. PubMed ID: 26544772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic brain segmentation in Time-of-Flight MRA images.
    Forkert ND; Säring D; Fiehler J; Illies T; Möller D; Handels H
    Methods Inf Med; 2009; 48(5):399-407. PubMed ID: 19696951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5- and 3.0-T magnetic resonance imaging.
    Shimizu M; Imai H; Kagoshima K; Umezawa E; Shimizu T; Yoshimoto Y
    World Neurosurg; 2013; 80(3-4):378-85. PubMed ID: 23022639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D image reconstruction of right subclavian artery aneurysms.
    Meier RA; Marianacci EB; Costello P; Fitzpatrick PJ; Hartnell GG
    J Comput Assist Tomogr; 1993; 17(6):887-90. PubMed ID: 8227573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.