These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8007809)

  • 41. Does fatigue induced by repeated dynamic efforts affect hamstring muscle function?
    Pinniger GJ; Steele JR; Groeller H
    Med Sci Sports Exerc; 2000 Mar; 32(3):647-53. PubMed ID: 10731008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A biomechanical evaluation of the role of fatigue in middle-distance running.
    Elliott BC; Roberts AD
    Can J Appl Sport Sci; 1980 Dec; 5(4):203-7. PubMed ID: 7449034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of skiing speed on ski and pole forces in cross-country skiing.
    Vähäsöyrinki P; Komi PV; Seppälä S; Ishikawa M; Kolehmainen V; Salmi JA; Linnamo V
    Med Sci Sports Exerc; 2008 Jun; 40(6):1111-6. PubMed ID: 18460994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical and morphological properties of different muscle-tendon units in the lower extremity and running mechanics: effect of aging and physical activity.
    Karamanidis K; Arampatzis A
    J Exp Biol; 2005 Oct; 208(Pt 20):3907-23. PubMed ID: 16215218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting.
    Nagahara R; Girard O
    Scand J Med Sci Sports; 2021 Mar; 31(3):586-596. PubMed ID: 33217086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The longitudinal variability of ground reaction forces in experienced and inexperienced runners.
    Lees A; Bouracier J
    Ergonomics; 1994 Jan; 37(1):197-206. PubMed ID: 8112276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans.
    Bonnard M; Sirin AV; Oddsson L; Thorstensson A
    Neurosci Lett; 1994 Jan; 166(1):101-5. PubMed ID: 8190349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters.
    Mero A; Komi PV
    Eur J Appl Physiol Occup Physiol; 1986; 55(5):553-61. PubMed ID: 3769912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is EMG of the lower leg dependent on weekly running mileage?
    Baur H; Hirschmüller A; Müller S; Cassel M; Mayer F
    Int J Sports Med; 2012 Jan; 33(1):53-7. PubMed ID: 22095320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanics of sprint running. A review.
    Mero A; Komi PV; Gregor RJ
    Sports Med; 1992 Jun; 13(6):376-92. PubMed ID: 1615256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics and Muscle Activity Patterns during Unweighting and Reloading Transition Phases in Running.
    Sainton P; Nicol C; Cabri J; Barthèlemy-Montfort J; Chavet P
    PLoS One; 2016; 11(12):e0168545. PubMed ID: 27992539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of the run intensity on bioelectrical activity of selected human leg muscles.
    Mastalerz A; Gwarek L; Sadowski J; Szczepański T
    Acta Bioeng Biomech; 2012; 14(2):101-7. PubMed ID: 22794153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determining the effect of cricket leg guards on running performance.
    Webster J; Roberts J
    J Sports Sci; 2011 Apr; 29(7):749-60. PubMed ID: 21416448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between the peak time of hamstring stretch and activation during sprinting.
    Higashihara A; Nagano Y; Ono T; Fukubayashi T
    Eur J Sport Sci; 2016; 16(1):36-41. PubMed ID: 25360992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical factors affecting running economy.
    Kyröläinen H; Belli A; Komi PV
    Med Sci Sports Exerc; 2001 Aug; 33(8):1330-7. PubMed ID: 11474335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in running mechanics and spring-mass behaviour during a 5-km time trial.
    Girard O; Millet GP; Slawinski J; Racinais S; Micallef JP
    Int J Sports Med; 2013 Sep; 34(9):832-40. PubMed ID: 23549688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints.
    Girard O; Brocherie F; Tomazin K; Farooq A; Morin JB
    J Biomech; 2016 Jun; 49(9):1490-1497. PubMed ID: 27015963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical Alterations during 800-m Self-Paced Track Running.
    Girard O; Millet GP; Micallef JP
    Int J Sports Med; 2017 Apr; 38(4):314-321. PubMed ID: 28249345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leg stiffness in human running: Comparison of estimates derived from previously published models to direct kinematic-kinetic measures.
    Coleman DR; Cannavan D; Horne S; Blazevich AJ
    J Biomech; 2012 Jul; 45(11):1987-91. PubMed ID: 22682258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.