These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 8007839)
1. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Lisi A; Pozzi D; Grimaldi S Membr Biochem; 1993; 10(4):203-12. PubMed ID: 8007839 [TBL] [Abstract][Full Text] [Related]
2. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Harris FM; Best KB; Bell JD Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860 [TBL] [Abstract][Full Text] [Related]
3. The new fluorescent membrane probe Ahba: a comparative study with the largely used Laurdan. Vequi-Suplicy CC; Lamy MT; Marquezin CA J Fluoresc; 2013 May; 23(3):479-86. PubMed ID: 23397490 [TBL] [Abstract][Full Text] [Related]
4. pH-dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence. Blumenthal R; Bali-Puri A; Walter A; Covell D; Eidelman O J Biol Chem; 1987 Oct; 262(28):13614-9. PubMed ID: 2820977 [TBL] [Abstract][Full Text] [Related]
5. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. Jay AG; Hamilton JA J Fluoresc; 2017 Jan; 27(1):243-249. PubMed ID: 27738919 [TBL] [Abstract][Full Text] [Related]
6. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Parasassi T; Loiero M; Raimondi M; Ravagnan G; Gratton E Biochim Biophys Acta; 1993 Dec; 1153(2):143-54. PubMed ID: 8274484 [TBL] [Abstract][Full Text] [Related]
7. Membrane aging during cell growth ascertained by Laurdan generalized polarization. Parasassi T; Di Stefano M; Ravagnan G; Sapora O; Gratton E Exp Cell Res; 1992 Oct; 202(2):432-9. PubMed ID: 1397095 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR. Granjon T; Vacheron MJ; Vial C; Buchet R Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737 [TBL] [Abstract][Full Text] [Related]
9. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Parasassi T; De Stasio G; d'Ubaldo A; Gratton E Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703 [TBL] [Abstract][Full Text] [Related]
10. Laurdan fluorescence spectroscopy reveals a single liquid-crystalline lipid phase and lack of thermotropic phase transitions in the plasma membrane of living human sperm. Palleschi S; Silvestroni L Biochim Biophys Acta; 1996 Mar; 1279(2):197-202. PubMed ID: 8603087 [TBL] [Abstract][Full Text] [Related]
11. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity. Gunther G; Malacrida L; Jameson DM; Gratton E; Sánchez SA Acc Chem Res; 2021 Feb; 54(4):976-987. PubMed ID: 33513300 [TBL] [Abstract][Full Text] [Related]
12. Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan. Schneckenburger H; Stock K; Strauss WS; Eickholz J; Sailer R J Microsc; 2003 Jul; 211(Pt 1):30-6. PubMed ID: 12839548 [TBL] [Abstract][Full Text] [Related]
13. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Bagatolli LA; Parasassi T; Fidelio GD; Gratton E Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552 [TBL] [Abstract][Full Text] [Related]
14. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Parasassi T; De Stasio G; Ravagnan G; Rusch RM; Gratton E Biophys J; 1991 Jul; 60(1):179-89. PubMed ID: 1883937 [TBL] [Abstract][Full Text] [Related]
15. Phase transition affects energy transfer efficiency in phospholipid vesicles. Kozyra KA; Heldt JR; Engelke M; Diehl HA Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115 [TBL] [Abstract][Full Text] [Related]
16. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Golfetto O; Hinde E; Gratton E Biophys J; 2013 Mar; 104(6):1238-47. PubMed ID: 23528083 [TBL] [Abstract][Full Text] [Related]
17. Study of rabbit erythrocytes membrane solubilization by sucrose monomyristate using laurdan and phasor analysis. Günther G; Herlax V; Lillo MP; Sandoval-Altamirano C; Belmar LN; Sánchez SA Colloids Surf B Biointerfaces; 2018 Jan; 161():375-385. PubMed ID: 29102849 [TBL] [Abstract][Full Text] [Related]
18. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Krasnowska EK; Gratton E; Parasassi T Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057 [TBL] [Abstract][Full Text] [Related]
19. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Bagatolli LA; Maggio B; Aguilar F; Sotomayor CP; Fidelio GD Biochim Biophys Acta; 1997 Apr; 1325(1):80-90. PubMed ID: 9106485 [TBL] [Abstract][Full Text] [Related]
20. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]