These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 8007989)
1. The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Engelberg D; Zandi E; Parker CS; Karin M Mol Cell Biol; 1994 Jul; 14(7):4929-37. PubMed ID: 8007989 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Lenssen E; Oberholzer U; Labarre J; De Virgilio C; Collart MA Mol Microbiol; 2002 Feb; 43(4):1023-37. PubMed ID: 11929548 [TBL] [Abstract][Full Text] [Related]
3. MSI3, a multicopy suppressor of mutants hyperactivated in the RAS-cAMP pathway, encodes a novel HSP70 protein of Saccharomyces cerevisiae. Shirayama M; Kawakami K; Matsui Y; Tanaka K; Toh-e A Mol Gen Genet; 1993 Sep; 240(3):323-32. PubMed ID: 8413180 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of RPI1, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras function. Kim JH; Powers S Mol Cell Biol; 1991 Aug; 11(8):3894-904. PubMed ID: 1649384 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae. Matsuura A; Anraku Y Mol Gen Genet; 1993 Apr; 238(1-2):6-16. PubMed ID: 8386801 [TBL] [Abstract][Full Text] [Related]
8. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
9. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Stanhill A; Schick N; Engelberg D Mol Cell Biol; 1999 Nov; 19(11):7529-38. PubMed ID: 10523641 [TBL] [Abstract][Full Text] [Related]
10. MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. Ruggieri R; Tanaka K; Nakafuku M; Kaziro Y; Toh-e A; Matsumoto K Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8778-82. PubMed ID: 2554329 [TBL] [Abstract][Full Text] [Related]
11. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. Pedruzzi I; Bürckert N; Egger P; De Virgilio C EMBO J; 2000 Jun; 19(11):2569-79. PubMed ID: 10835355 [TBL] [Abstract][Full Text] [Related]
12. Saccharomyces cerevisiae CDC25 (1028-1589) is a guanine nucleotide releasing factor for mammalian ras proteins and is oncogenic in NIH3T3 cells. Chevallier-Multon MC; Schweighoffer F; Barlat I; Baudouy N; Fath I; Duchesne M; Tocqué B J Biol Chem; 1993 May; 268(15):11113-8. PubMed ID: 8388382 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with beta-transducin repeats. Spevak W; Keiper BD; Stratowa C; Castañón MJ Mol Cell Biol; 1993 Aug; 13(8):4953-66. PubMed ID: 8393141 [TBL] [Abstract][Full Text] [Related]
14. The Saccharomyces cerevisiae SDC25 C-domain gene product overcomes the dominant inhibitory activity of Ha-Ras Asn-17. Schweighoffer F; Cai H; Chevallier-Multon MC; Fath I; Cooper G; Tocque B Mol Cell Biol; 1993 Jan; 13(1):39-43. PubMed ID: 8380225 [TBL] [Abstract][Full Text] [Related]
15. A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins. Jacquet E; Vanoni M; Ferrari C; Alberghina L; Martegani E; Parmeggiani A J Biol Chem; 1992 Dec; 267(34):24181-3. PubMed ID: 1447167 [TBL] [Abstract][Full Text] [Related]
16. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. Colombo S; Ma P; Cauwenberg L; Winderickx J; Crauwels M; Teunissen A; Nauwelaers D; de Winde JH; Gorwa MF; Colavizza D; Thevelein JM EMBO J; 1998 Jun; 17(12):3326-41. PubMed ID: 9628870 [TBL] [Abstract][Full Text] [Related]
17. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233 [TBL] [Abstract][Full Text] [Related]
18. At acidic pH, the diminished hypoxic expression of the SRP1/TIR1 yeast gene depends on the GPA2-cAMP and HOG pathways. Bourdineaud JP Res Microbiol; 2000; 151(1):43-52. PubMed ID: 10724483 [TBL] [Abstract][Full Text] [Related]
19. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Thevelein JM; de Winde JH Mol Microbiol; 1999 Sep; 33(5):904-18. PubMed ID: 10476026 [TBL] [Abstract][Full Text] [Related]
20. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Kraakman L; Lemaire K; Ma P; Teunissen AW; Donaton MC; Van Dijck P; Winderickx J; de Winde JH; Thevelein JM Mol Microbiol; 1999 Jun; 32(5):1002-12. PubMed ID: 10361302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]