These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 8009640)

  • 21. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction.
    Perissinotti PP; Giugovaz Tropper B; Uchitel OD
    Eur J Neurosci; 2008 Mar; 27(6):1333-44. PubMed ID: 18336569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural changes in the juxtamembranous layer of ganglionar neurons with orthodromic pessimal stimulation.
    Sotnikov OS; Polozova OL
    Neurosci Behav Physiol; 1991; 21(2):110-6. PubMed ID: 1715057
    [No Abstract]   [Full Text] [Related]  

  • 24. Long-term potentiation of transmitter exocytosis expressed by Ca2+-induced Ca2+ release from thapsigargin-sensitive Ca2+ stores in preganglionic nerve terminals.
    Cong YL; Takeuchi S; Tokuno H; Kuba K
    Eur J Neurosci; 2004 Jul; 20(2):419-26. PubMed ID: 15233751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Background conductance attributable to spontaneous opening of muscarinic K+ channels in rabbit sino-atrial node cells.
    Ito H; Ono K; Noma A
    J Physiol; 1994 Apr; 476(1):55-68. PubMed ID: 8046635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus.
    Päsler D; Gabriel S; Heinemann U
    Brain Res; 2007 Oct; 1173():14-26. PubMed ID: 17850772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Presynaptic effects of anticholinesterase substances in the sympathetic ganglia].
    Bol'shakov VIu; Samoĭlova MV; Lukomskaia NIa; Magazanik LG
    Dokl Akad Nauk SSSR; 1985; 285(3):731-4. PubMed ID: 3004860
    [No Abstract]   [Full Text] [Related]  

  • 28. Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy.
    Bringmann A; Francke M; Pannicke T; Biedermann B; Faude F; Enzmann V; Wiedemann P; Reichelt W; Reichenbach A
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3316-23. PubMed ID: 10586958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of retinal glial cell potassium channels.
    Brand S; Hanke W
    J Hirnforsch; 1996; 37(1):73-9. PubMed ID: 8964980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Morphofunctional mechanisms of responses of sympathetic ganglia to the high external temperature and pyrogen exposure].
    Gurin VN; Archakova LI; Ekimova IV
    Morfologiia; 1998; 114(6):31-8. PubMed ID: 10763484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression profiles of high voltage-activated calcium channels in sympathetic and parasympathetic pelvic ganglion neurons innervating the urogenital system.
    Won YJ; Whang K; Kong ID; Park KS; Lee JW; Jeong SW
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1064-71. PubMed ID: 16467454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of the frog Rana temporaria.
    Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA
    Gen Physiol Biophys; 1995 Dec; 14(6):525-34. PubMed ID: 8773494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristics of the interrelationships of gliocytes with neurocyte processes in rat celiac ganglia].
    Kakabadze SA
    Tsitologiia; 1985 Nov; 27(11):1298-300. PubMed ID: 4089957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single ion channel currents in neuropile glial cells of the leech central nervous system.
    Müller M; Hanke W; Schlue WR
    Glia; 1993 Dec; 9(4):260-8. PubMed ID: 8112819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroglial chemical synapses in the cerebellum of adult frog.
    Larionova NP; Reutov VP; Samosudova NV; Chailakhyan LM
    Dokl Biol Sci; 2010; 432():171-5. PubMed ID: 20665146
    [No Abstract]   [Full Text] [Related]  

  • 36. Membrane retrieval by macropinocytosis in presynaptic terminals during transmitter release in cat sympathetic ganglia in situ.
    Kadota T; Kadota K
    J Electron Microsc (Tokyo); 1982; 31(1):73-80. PubMed ID: 6152696
    [No Abstract]   [Full Text] [Related]  

  • 37. [Transmitter function in sympathetic ganglion cells. A review].
    Elfvin LG; Forsman C
    Lakartidningen; 1981 Oct; 78(44):3909-12. PubMed ID: 6120271
    [No Abstract]   [Full Text] [Related]  

  • 38. [ELectron microscopy of the ganglion trunci nervi vagi in the turtle (author's transl)].
    Fujimaki Y
    Kaibogaku Zasshi; 1981 Feb; 56(1):1-12. PubMed ID: 7270039
    [No Abstract]   [Full Text] [Related]  

  • 39. [Electrical activity of granule cells in the isolated frog cerebellum].
    Dunin-Barkovskiĭ VL; Zhukovskaia NM; Larionova NP; Chaĭlakhian LM; Chudakov LI
    Neirofiziologiia; 1981; 13(6):649-51. PubMed ID: 6977098
    [No Abstract]   [Full Text] [Related]  

  • 40. The plasmalemmal vesicular system in striated muscle capillaries and in pericytes.
    Frøkjaer-Jensen J
    Tissue Cell; 1984; 16(1):31-42. PubMed ID: 6608166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.