These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8010683)

  • 1. The rational selection of purification processes for proteins: an expert system for downstream processing design.
    Leser EW; Asenjo JA
    Ann N Y Acad Sci; 1994 May; 721():337-47. PubMed ID: 8010683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of purification processes for recombinant proteins.
    Asenjo JA; Parrado J; Andrews BA
    Ann N Y Acad Sci; 1991 Dec; 646():334-56. PubMed ID: 1809201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of purification processes for recombinant proteins.
    Leser EW; Asenjo JA
    J Chromatogr; 1992 Dec; 584(1):43-57. PubMed ID: 1487515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation in an expert system of a selection rationale for purification processes for recombinant proteins.
    Leser EW; Lienqueo ME; Asenjo JA
    Ann N Y Acad Sci; 1996 May; 782():441-55. PubMed ID: 8659915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal synthesis of protein purification processes.
    Vásquez-Alvarez E; Lienqueo ME; Pinto JM
    Biotechnol Prog; 2001; 17(4):685-96. PubMed ID: 11485430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient MILP formulations for the optimal synthesis of chromatographic protein purification processes.
    Vásquez-Alvarez E; Pinto JM
    J Biotechnol; 2004 Jun; 110(3):295-311. PubMed ID: 15163520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein recovery, separation and purification. Selection of optimal techniques using an expert system.
    Leser EW; Asenjo JA
    Mem Inst Oswaldo Cruz; 1994; 89(1):99-109. PubMed ID: 7823827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is there a rational method to purify proteins? From expert systems to proteomics.
    Asenjo JA; Andrews BA
    J Mol Recognit; 2004; 17(3):236-47. PubMed ID: 15137033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An object-based architecture for biomedical expert database systems.
    Barsalou T
    Comput Methods Programs Biomed; 1989; 30(2-3):157-68. PubMed ID: 2582749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein purification using chromatography: selection of type, modelling and optimization of operating conditions.
    Asenjo JA; Andrews BA
    J Mol Recognit; 2009; 22(2):65-76. PubMed ID: 18546092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of the selection of protein chromatography and the rate model to affinity chromatography.
    Sandoval G; Shene C; Andrews BA; Asenjo JA
    J Mol Recognit; 2010; 23(6):609-17. PubMed ID: 21038360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal process synthesis for the production of multiple recombinant proteins.
    Iribarren OA; Montagna JM; Vecchietti AR; Andrews B; Asenjo JA; Pinto JM
    Biotechnol Prog; 2004; 20(4):1032-43. PubMed ID: 15296427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous downstream processing for high value biological products: A Review.
    Zydney AL
    Biotechnol Bioeng; 2016 Mar; 113(3):465-75. PubMed ID: 26153056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of chromatographic protein purification operations based on physicochemical properties.
    Watanabe E; Tsoka S; Asenjo JA
    Ann N Y Acad Sci; 1994 May; 721():348-64. PubMed ID: 8010684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatographic techniques in the downstream processing of proteins in biotechnology.
    Freitag R
    Methods Mol Biol; 2014; 1104():419-58. PubMed ID: 24297429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification.
    Singh N; Herzer S
    Adv Biochem Eng Biotechnol; 2018; 165():115-178. PubMed ID: 28795201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MINLP models for the synthesis of optimal peptide tags and downstream protein processing.
    Simeonidis E; Pinto JM; Lienqueo ME; Tsoka S; Papageorgiou LG
    Biotechnol Prog; 2005; 21(3):875-84. PubMed ID: 15932268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of proteomics for design of a tailored host cell for highly efficient protein purification.
    Liu Z; Bartlow P; Varakala R; Beitle R; Koepsel R; Ataai MM
    J Chromatogr A; 2009 Mar; 1216(12):2433-8. PubMed ID: 19187940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery and purification of plant-made recombinant proteins.
    Wilken LR; Nikolov ZL
    Biotechnol Adv; 2012; 30(2):419-33. PubMed ID: 21843625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal synthesis of chromatographic trains for downstream protein processing.
    Polykarpou EM; Dalby PA; Papageorgiou LG
    Biotechnol Prog; 2011; 27(6):1653-60. PubMed ID: 21976368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.