These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8010769)

  • 1. Arbinose utilization by xylose-fermenting yeasts and fungi.
    McMillan JD; Boynton BL
    Appl Biochem Biotechnol; 1994; 45-46():569-84. PubMed ID: 8010769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for L-arabinose fermenting yeasts.
    Dien BS; Kurtzman CP; Saha BC; Bothast RJ
    Appl Biochem Biotechnol; 1996; 57-58():233-42. PubMed ID: 8669899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation profiles of the yeast Brettanomyces bruxellensis in d-xylose and l-arabinose aiming its application as a second-generation ethanol producer.
    da Silva JM; Ribeiro KC; Teles GH; Ribeiro E; de Morais Junior MA; de Barros Pita W
    Yeast; 2020 Nov; 37(11):597-608. PubMed ID: 32889766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.
    Verhoeven MD; de Valk SC; Daran JG; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30010916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway.
    Bettiga M; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Microb Cell Fact; 2009 Jul; 8():40. PubMed ID: 19630951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of pentoses to ethanol by yeasts and fungi.
    Schneider H
    Crit Rev Biotechnol; 1989; 9(1):1-40. PubMed ID: 2670247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast.
    Watanabe I; Ando A; Nakamura T
    J Ind Microbiol Biotechnol; 2012 Feb; 39(2):307-15. PubMed ID: 21898112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The isolation of pentose-assimilating yeasts and their xylose fermentation potential.
    Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E
    Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains.
    Karhumaa K; Wiedemann B; Hahn-Hägerdal B; Boles E; Gorwa-Grauslund MF
    Microb Cell Fact; 2006 Apr; 5():18. PubMed ID: 16606456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis.
    Dunn KL; Rao CV
    Biotechnol Bioeng; 2015 Nov; 112(11):2228-40. PubMed ID: 25943255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts.
    Fonseca C; Neves AR; Antunes AM; Noronha JP; Hahn-Hägerdal B; Santos H; Spencer-Martins I
    Appl Environ Microbiol; 2008 Mar; 74(6):1845-55. PubMed ID: 18245253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.