These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8011075)

  • 1. Trapping succinimides in aged polypeptides by chemical reduction.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):89-96. PubMed ID: 8011075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of beta-isomerized aspartic acid as the corresponding alcohol.
    Carter DA; McFadden PN
    J Protein Chem; 1994 Jan; 13(1):97-106. PubMed ID: 8011077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes.
    Momand J; Clarke S
    Biochemistry; 1987 Dec; 26(24):7798-805. PubMed ID: 3480758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side reactions in peptide synthesis. II. Formation of succinimide derivatives from aspartyl residues.
    Bodanszky M; Natarajan S
    J Org Chem; 1975 Aug; 40(17):2495-9. PubMed ID: 1165511
    [No Abstract]   [Full Text] [Related]  

  • 9. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared analysis of peptide succinimide derivatives.
    Pistorius AM; Groenen PJ; De Grip WJ
    Int J Pept Protein Res; 1993 Dec; 42(6):570-7. PubMed ID: 8307688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deuteration protects asparagine residues against racemization.
    Lowenson JD; Shmanai VV; Shklyaruck D; Clarke SG; Shchepinov MS
    Amino Acids; 2016 Sep; 48(9):2189-96. PubMed ID: 27169868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides.
    Brennan TV; Clarke S
    Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous cross-linking of proteins at aspartate and asparagine residues is mediated via a succinimide intermediate.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2018 Oct; 475(20):3189-3200. PubMed ID: 30181147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of cyclopentyl ester protection for aspartic acid to reduce base catalyzed succinimide formation in solid-phase peptide synthesis.
    Blake J
    Int J Pept Protein Res; 1979 Apr; 13(4):418-25. PubMed ID: 457335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins.
    McFadden PN; Clarke S
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2595-9. PubMed ID: 3472227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.
    Nakayoshi T; Kato K; Fukuyoshi S; Takahashi O; Kurimoto E; Oda A
    Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):759-766. PubMed ID: 29305913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of protein structure on the products emerging from succinimide hydrolysis.
    Athmer L; Kindrachuk J; Georges F; Napper S
    J Biol Chem; 2002 Aug; 277(34):30502-7. PubMed ID: 12068021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigation of a phosphorylation-catalyzed, isoaspartate-free, protein succinimide: crystallographic structure of post-succinimide His15Asp histidine-containing protein.
    Napper S; Prasad L; Delbaere LT
    Biochemistry; 2008 Sep; 47(36):9486-96. PubMed ID: 18702519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 18O labeling method for identification and quantification of succinimide in proteins.
    Xiao G; Bondarenko PV; Jacob J; Chu GC; Chelius D
    Anal Chem; 2007 Apr; 79(7):2714-21. PubMed ID: 17313184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.