These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8011479)

  • 21. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
    Steriade M; Contreras D
    J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms.
    Terman D; Bose A; Kopell N
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15417-22. PubMed ID: 8986826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts.
    Steriade M; Timofeev I; Dürmüller N; Grenier F
    J Neurophysiol; 1998 Jan; 79(1):483-90. PubMed ID: 9425218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow sleep oscillation, rhythmic K-complexes, and their paroxysmal developments.
    Steriade M; Amzica F
    J Sleep Res; 1998; 7 Suppl 1():30-5. PubMed ID: 9682191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow-wave sleep: serotonin, neuronal plasticity, and seizures.
    Steriade M
    Arch Ital Biol; 2004 Jul; 142(4):359-67. PubMed ID: 15493541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation.
    Shaw FZ
    J Neurophysiol; 2007 Jan; 97(1):238-47. PubMed ID: 17035363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics.
    Crunelli V; Blethyn KL; Cope DW; Hughes SW; Parri HR; Turner JP; Tòth TI; Williams SR
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1675-93. PubMed ID: 12626003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns.
    Corner MA
    Brain Res Rev; 2008 Nov; 59(1):221-44. PubMed ID: 18722470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship of phasic sleep phenomena, spike-wave discharges, and state-dependent responsiveness in sleep.
    Halasz P; Kelemen A
    Epilepsia; 2010 May; 51(5):934-5. PubMed ID: 20536531
    [No Abstract]   [Full Text] [Related]  

  • 33. Reduction of adrenergic neurotransmission with clonidine aggravates spike-wave seizures and alters activity in the cortex and the thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Brain Res Bull; 2005 Jan; 64(6):533-40. PubMed ID: 15639550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological consequences of selective suppression of synaptic transmission in developing cerebral cortical networks in vitro: differential effects on intrinsically generated bioelectric discharges in a living 'model' system for slow-wave sleep activity.
    Corner MA; Baker RE; van Pelt J
    Neurosci Biobehav Rev; 2008 Oct; 32(8):1569-600. PubMed ID: 18722467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
    Crunelli V; Hughes SW
    Nat Neurosci; 2010 Jan; 13(1):9-17. PubMed ID: 19966841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spike-wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus.
    van Luijtelaar G; Hramov A; Sitnikova E; Koronovskii A
    Clin Neurophysiol; 2011 Apr; 122(4):687-95. PubMed ID: 21093357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coherent oscillations and short-term plasticity in corticothalamic networks.
    Steriade M
    Trends Neurosci; 1999 Aug; 22(8):337-45. PubMed ID: 10407416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EEG and behavioral study in cats with chronic thalamic lesions with particular regard to the spindles and paroxysmal activity.
    Angeleri F; Marchesi GF; Bergonzi P; Ferroni A
    Electroencephalogr Clin Neurophysiol; 1967 Aug; 23(2):191. PubMed ID: 4166740
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.