These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8011655)
1. Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor. Takase K Biochemistry; 1994 Jun; 33(25):7925-30. PubMed ID: 8011655 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase. Takase K; Matsumoto T; Mizuno H; Yamane K Biochim Biophys Acta; 1992 Apr; 1120(3):281-8. PubMed ID: 1576155 [TBL] [Abstract][Full Text] [Related]
3. The inhibition of human salivary alpha-amylase by type II alpha-amylase inhibitor from Triticum aestivum is competitive, slow and tight-binding. Goff DJ; Kull FJ J Enzyme Inhib; 1995; 9(2):163-70. PubMed ID: 8583253 [TBL] [Abstract][Full Text] [Related]
4. Mapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors. Sørensen JF; Sibbesen O Protein Eng Des Sel; 2006 May; 19(5):205-10. PubMed ID: 16517552 [TBL] [Abstract][Full Text] [Related]
5. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127 [TBL] [Abstract][Full Text] [Related]
6. The purification of a novel amylase from Bacillus subtilis and its inhibition by wheat proteins. Orlando AR; Ade P; Di Maggio D; Fanelli C; Vittozzi L Biochem J; 1983 Feb; 209(2):561-4. PubMed ID: 6189482 [TBL] [Abstract][Full Text] [Related]
7. Crystallization and preliminary X-ray studies of wild type and catalytic-site mutant alpha-amylase from Bacillus subtilis. Mizuno H; Morimoto Y; Tsukihara T; Matsumoto T; Takase K J Mol Biol; 1993 Dec; 234(4):1282-3. PubMed ID: 8263932 [TBL] [Abstract][Full Text] [Related]
8. Interaction of human alpha-amylases with inhibitors from wheat flour. O'Connor CM; McGeeney KF Biochim Biophys Acta; 1981 Apr; 658(2):397-405. PubMed ID: 6166324 [TBL] [Abstract][Full Text] [Related]
9. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Bompard-Gilles C; Rousseau P; Rougé P; Payan F Structure; 1996 Dec; 4(12):1441-52. PubMed ID: 8994970 [TBL] [Abstract][Full Text] [Related]
10. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Ghollasi M; Ghanbari-Safari M; Khajeh K Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644 [TBL] [Abstract][Full Text] [Related]
11. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution. Kumar S; Singh N; Mishra B; Dube D; Sinha M; Singh SB; Dey S; Kaur P; Sharma S; Singh TP BMC Struct Biol; 2010 Nov; 10():41. PubMed ID: 21092126 [TBL] [Abstract][Full Text] [Related]
12. Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution. Pereira PJ; Lozanov V; Patthy A; Huber R; Bode W; Pongor S; Strobl S Structure; 1999 Sep; 7(9):1079-88. PubMed ID: 10508777 [TBL] [Abstract][Full Text] [Related]
13. A model for the interaction of wheat monomeric and dimeric protein inhibitors with alpha-amylase. Silano V; Poerio E; Buonocore V Mol Cell Biochem; 1977 Dec; 18(2-3):87-91. PubMed ID: 304960 [TBL] [Abstract][Full Text] [Related]
14. RBI, a one-domain alpha-amylase/trypsin inhibitor with completely independent binding sites. Maskos K; Huber-Wunderlich M; Glockshuber R FEBS Lett; 1996 Nov; 397(1):11-6. PubMed ID: 8941704 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of α-amylase Activity by Zn Liao SM; Shen NK; Liang G; Lu B; Lu ZL; Peng LX; Zhou F; Du LQ; Wei YT; Zhou GP; Huang RB Med Chem; 2019; 15(5):510-520. PubMed ID: 30556504 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Priyadharshini R; Gunasekaran P Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074 [TBL] [Abstract][Full Text] [Related]
17. A cupin domain is involved in α-amylase inhibitory activity. Wang Z; Chen M; Zhang Y; Huang L; Wang S; Tao Y; Qian P; Mijiti A; Gu A; Zhang H; Shi S; Cheng H; Wu Y; Xiao L; Ma H Plant Sci; 2018 Dec; 277():285-295. PubMed ID: 30466594 [TBL] [Abstract][Full Text] [Related]
18. [Sequence analysis of alpha-amylase inhibitors genes with resistance to insects in wheat and Aegilops]. Wang JR; Yan ZH; Wei YM; Zheng YL Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):737-42. PubMed ID: 16285514 [TBL] [Abstract][Full Text] [Related]
19. Substrate-inhibitor interactions in the kinetics of alpha-amylase inhibition by ragi alpha-amylase/trypsin inhibitor (RATI) and its various N-terminal fragments. Alam N; Gourinath S; Dey S; Srinivasan A; Singh TP Biochemistry; 2001 Apr; 40(14):4229-33. PubMed ID: 11284678 [TBL] [Abstract][Full Text] [Related]
20. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Chen J; Chen X; Dai J; Xie G; Yan L; Lu L; Chen J Int J Biol Macromol; 2015 Sep; 80():200-7. PubMed ID: 26092061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]