These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8011666)
1. Isolation of Tn917 insertional mutants of Bacillus subtilis that are resistant to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Quirk PG; Guffanti AA; Clejan S; Cheng J; Krulwich TA Biochim Biophys Acta; 1994 Jun; 1186(1-2):27-34. PubMed ID: 8011666 [TBL] [Abstract][Full Text] [Related]
2. A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore. Cheng J; Guffanti AA; Krulwich TA Mol Microbiol; 1997 Mar; 23(6):1107-20. PubMed ID: 9106203 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of specific exogenous fatty acids into membrane lipids modulates protonophore resistance in Bacillus subtilis. Krulwich TA; Clejan S; Falk LH; Guffanti AA J Bacteriol; 1987 Oct; 169(10):4479-85. PubMed ID: 2820928 [TBL] [Abstract][Full Text] [Related]
4. Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Tran SL; Rao M; Simmers C; Gebhard S; Olsson K; Cook GM Microbiology (Reading); 2005 Mar; 151(Pt 3):665-672. PubMed ID: 15758213 [TBL] [Abstract][Full Text] [Related]
5. The protonophore resistance of Bacillus megaterium is correlated with elevated ratios of saturated to unsaturated fatty acids in membrane phospholipids. Clejan S; Guffanti AA; Falk LH; Krulwich TA Biochim Biophys Acta; 1988 Jan; 932(1):43-51. PubMed ID: 3122834 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of uncoupler-resistant mutants of Bacillus subtilis. Guffanti AA; Clejan S; Falk LH; Hicks DB; Krulwich TA J Bacteriol; 1987 Oct; 169(10):4469-78. PubMed ID: 2820927 [TBL] [Abstract][Full Text] [Related]
7. Identification of a putative Bacillus subtilis rho gene. Quirk PG; Dunkley EA; Lee P; Krulwich TA J Bacteriol; 1993 Feb; 175(3):647-54. PubMed ID: 8423140 [TBL] [Abstract][Full Text] [Related]
8. Protonophore-resistance and cytochrome expression in mutant strains of the facultative alkaliphile Bacillus firmus OF4. Quirk PG; Guffanti AA; Plass RJ; Clejan S; Krulwich TA Biochim Biophys Acta; 1991 Jun; 1058(2):131-40. PubMed ID: 1646630 [TBL] [Abstract][Full Text] [Related]
9. Large decreases in membrane phosphatidylethanolamine and diphosphatidylglycerol upon mutation to duramycin resistance do not change the protonophore resistance of Bacillus subtilis. Dunkley EA; Clejan S; Guffanti AA; Krulwich TA Biochim Biophys Acta; 1988 Aug; 943(1):13-8. PubMed ID: 3135835 [TBL] [Abstract][Full Text] [Related]
10. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. Gutierrez JA; Crowley PJ; Brown DP; Hillman JD; Youngman P; Bleiweis AS J Bacteriol; 1996 Jul; 178(14):4166-75. PubMed ID: 8763945 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes. Grossman TH; Tuckman M; Ellestad S; Osburne MS J Bacteriol; 1993 Oct; 175(19):6203-11. PubMed ID: 8407792 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR. Daniel RA; Haiech J; Denizot F; Errington J J Bacteriol; 1997 Sep; 179(17):5636-8. PubMed ID: 9287030 [TBL] [Abstract][Full Text] [Related]
13. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. Camilli A; Portnoy A; Youngman P J Bacteriol; 1990 Jul; 172(7):3738-44. PubMed ID: 2163385 [TBL] [Abstract][Full Text] [Related]
14. An operon of Bacillus subtilis motility genes transcribed by the sigma D form of RNA polymerase. Mirel DB; Lustre VM; Chamberlin MJ J Bacteriol; 1992 Jul; 174(13):4197-204. PubMed ID: 1624413 [TBL] [Abstract][Full Text] [Related]
15. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Perkins JB; Youngman PJ Proc Natl Acad Sci U S A; 1986 Jan; 83(1):140-4. PubMed ID: 3001720 [TBL] [Abstract][Full Text] [Related]
16. Emr, an Escherichia coli locus for multidrug resistance. Lomovskaya O; Lewis K Proc Natl Acad Sci U S A; 1992 Oct; 89(19):8938-42. PubMed ID: 1409590 [TBL] [Abstract][Full Text] [Related]
17. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Steinmetz M; Richter R Gene; 1994 May; 142(1):79-83. PubMed ID: 8181761 [TBL] [Abstract][Full Text] [Related]
18. The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Bol DK; Yasbin RE Gene; 1991 Dec; 109(1):31-7. PubMed ID: 1756979 [TBL] [Abstract][Full Text] [Related]
19. The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein. Wray LV; Atkinson MR; Fisher SH J Bacteriol; 1994 Jan; 176(1):108-14. PubMed ID: 8282685 [TBL] [Abstract][Full Text] [Related]
20. Genetic analysis of transfer-related regions of the vancomycin resistance Enterococcus conjugative plasmid pHTbeta: identification of oriT and a putative relaxase gene. Tomita H; Ike Y J Bacteriol; 2005 Nov; 187(22):7727-37. PubMed ID: 16267297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]