These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8011673)

  • 1. The selective use of stearoyl-polyunsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine for the synthesis of phosphatidylserine.
    Ellingson JS; Seenaiah B
    Biochim Biophys Acta; 1994 Jun; 1213(1):113-7. PubMed ID: 8011673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate preference in phosphatidylserine biosynthesis for docosahexaenoic acid containing species.
    Kim HY; Bigelow J; Kevala JH
    Biochemistry; 2004 Feb; 43(4):1030-6. PubMed ID: 14744148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylethanolamine derived from phosphatidylserine is deacylated and reacylated in rat hepatocytes.
    Samborski RW; Vance DE
    Biochim Biophys Acta; 1993 Mar; 1167(1):15-21. PubMed ID: 8461328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid requirement of epididymal testosterone 5 alpha-reductase and phospholipid composition of epididymal microsomes.
    Kawai C; Ichihara K
    Steroids; 1993 Oct; 58(10):472-7. PubMed ID: 8256257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biosynthesis of phosphatidylserine and phosphatidylethanolamine from L-[3-14C]serine in isolated rat hepatocytes.
    Bjerve KS
    Biochim Biophys Acta; 1985 Mar; 833(3):396-405. PubMed ID: 3918578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic conversion of phosphatidylserine via phosphatidylethanolamine into phosphatidylcholine in rat brain.
    Woronczak JP; Poddana H; Siucińska E; Kossut M; Barańska J
    Biochem Mol Biol Int; 1993 Aug; 30(6):1153-60. PubMed ID: 8220259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells.
    Vance JE; Tasseva G
    Biochim Biophys Acta; 2013 Mar; 1831(3):543-54. PubMed ID: 22960354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of rat hepatic phosphatidylethanolamine N-methyltransferase for molecular species of diacyl phosphatidylethanolamine.
    Ridgway ND; Vance DE
    J Biol Chem; 1988 Nov; 263(32):16856-63. PubMed ID: 3182818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between chain elongation of palmitoyl-CoA and phospholipid content in rat liver microsomes.
    Kawashima Y; Nakagawa M; Suzuki Y; Uchiyama M
    Biochim Biophys Acta; 1976 Aug; 441(2):173-80. PubMed ID: 952986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of phosphatidylcholine on microsomal chain elongation and the fate of stearoyl-CoA in rat liver microsomes.
    Kawashima Y; Suzuki Y
    Biochim Biophys Acta; 1978 Jun; 529(3):489-92. PubMed ID: 667088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative deacylation of different molecular species of endogenous phosphatidylethanolamine in rat liver microsomes by phospholipase activity.
    Holub BJ
    Biochim Biophys Acta; 1982 May; 711(2):305-10. PubMed ID: 7093298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells.
    Garcia MC; Ward G; Ma YC; Salem N; Kim HY
    J Neurochem; 1998 Jan; 70(1):24-30. PubMed ID: 9422343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthesis of phosphatidylserines by acylation of 1-acyl-sn-glycero-3-phosphoserine in rat liver.
    Holub BJ
    Biochim Biophys Acta; 1980 May; 618(2):255-62. PubMed ID: 6769495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid molecular species from isolated bovine rod outer segments incorporate exogenous fatty acids at different rates.
    Louie K; Zimmerman WF; Keys S; Anderson RE
    Exp Eye Res; 1991 Sep; 53(3):309-16. PubMed ID: 1834475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance liquid chromatographic method for determination of the metabolism of polyunsaturated molecular species of phosphatidylserine labeled in the polar group.
    Seenaiah B; Ellingson JS
    J Chromatogr B Biomed Appl; 1994 Oct; 660(2):380-5. PubMed ID: 7866529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes.
    Holub BJ
    J Biol Chem; 1978 Feb; 253(3):691-6. PubMed ID: 202595
    [No Abstract]   [Full Text] [Related]  

  • 18. Dietary polyunsaturated fatty acids in gestation alter fetal cortical phospholipids, fatty acids and phosphatidylserine synthesis.
    Tam O; Innis SM
    Dev Neurosci; 2006; 28(3):222-9. PubMed ID: 16679769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes by progesterone derivatives in fatty acids from phosphatidylcholine and phosphatidylethanolamine fractions in rat liver endoplasmic reticulum.
    Feuer G; Dhami MS; de la Iglesia FA
    Exp Toxicol Pathol; 1994 Jul; 46(2):169-76. PubMed ID: 7987076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.