These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8011860)

  • 1. Compressive properties of cortical bone: mineral-organic interfacial bonding.
    Walsh WR; Guzelsu N
    Biomaterials; 1994 Jan; 15(2):137-45. PubMed ID: 8011860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone.
    Walsh WR; Guzelsu N
    Biomed Mater Eng; 1993; 3(2):75-84. PubMed ID: 8369729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of in vitro fluoride ion treatment on the ultrasonic properties of cortical bone.
    Walsh WR; Labrador DP; Kim HD; Guzelsu N
    Ann Biomed Eng; 1994; 22(4):404-15. PubMed ID: 7998686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.
    Luo Q; Leng H; Wang X; Zhou Y; Rong Q
    J Orthop Res; 2014 Feb; 32(2):217-23. PubMed ID: 24122969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing the structurally effective mineral content of bone with in vitro fluoride treatment.
    DePaula CA; Abjornson C; Pan Y; Kotha SP; Koike K; Guzelsu N
    J Biomech; 2002 Mar; 35(3):355-61. PubMed ID: 11858811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform partial dissolution of bone mineral by using fluoride and phosphate ions combination.
    DePaula CA; Pan Y; Guzelsu N
    Connect Tissue Res; 2008; 49(5):328-42. PubMed ID: 18991086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content.
    Kotha SP; Walsh WR; Pan Y; Guzelsu N
    Biomed Mater Eng; 1998; 8(5-6):321-34. PubMed ID: 10081595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle X-ray scattering and backscattered electron imaging study.
    Fratzl P; Schreiber S; Roschger P; Lafage MH; Rodan G; Klaushofer K
    J Bone Miner Res; 1996 Feb; 11(2):248-53. PubMed ID: 8822349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demineralized bone matrix as a template for mineral--organic composites.
    Walsh WR; Christiansen DL
    Biomaterials; 1995 Dec; 16(18):1363-71. PubMed ID: 8590762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone.
    Garnero P; Borel O; Gineyts E; Duboeuf F; Solberg H; Bouxsein ML; Christiansen C; Delmas PD
    Bone; 2006 Mar; 38(3):300-9. PubMed ID: 16271523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of gamma irradiation on the anisotropy of bovine cortical bone.
    Russell NA; Pelletier MH; Bruce WJ; Walsh WR
    Med Eng Phys; 2012 Oct; 34(8):1117-22. PubMed ID: 22192843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-CeseƱa A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mineral-organic bonding effectiveness in bone--theoretical considerations.
    Bundy KJ
    Ann Biomed Eng; 1985; 13(2):119-35. PubMed ID: 4003875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes.
    Nanda R; Hazan S; Sauer K; Aladin V; Keinan-Adamsky K; Corzilius B; Shahar R; Zaslansky P; Goobes G
    Acta Biomater; 2022 May; 144():195-209. PubMed ID: 35331939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanicla properties and mineral content of avascular and revascularizing cortical bone.
    Yu WY; Siu CM; Shim SS; Hawthorne HM; Dunbar JS
    J Bone Joint Surg Am; 1975 Jul; 57(5):692-5. PubMed ID: 1150716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.
    Pang S; Schwarcz HP; Jasiuk I
    J Mech Behav Biomed Mater; 2021 Jan; 113():104132. PubMed ID: 33049620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone mineral as an electrical energy reservoir.
    Nakamura M; Hiratai R; Yamashita K
    J Biomed Mater Res A; 2012 May; 100(5):1368-74. PubMed ID: 22374799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.
    Wang ZX; Lloyd AA; Burket JC; Gourion-Arsiquaud S; Donnelly E
    Bone; 2016 Mar; 84():237-244. PubMed ID: 26780445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.