These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 8011901)
1. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers. Chen W; Lee RC Biophys J; 1994 Mar; 66(3 Pt 1):700-9. PubMed ID: 8011901 [TBL] [Abstract][Full Text] [Related]
2. Electric field-induced functional reductions in the K+ channels mainly resulted from supramembrane potential-mediated electroconformational changes. Chen W; Han Y; Chen Y; Astumian D Biophys J; 1998 Jul; 75(1):196-206. PubMed ID: 9649379 [TBL] [Abstract][Full Text] [Related]
3. An improved vaseline gap voltage clamp for skeletal muscle fibers. Hille B; Campbell DT J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424 [TBL] [Abstract][Full Text] [Related]
4. Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber. Chandler WK; Hui CS J Gen Physiol; 1990 Aug; 96(2):225-56. PubMed ID: 2212982 [TBL] [Abstract][Full Text] [Related]
5. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse. Chen W; Lee RC Biophys J; 1994 Aug; 67(2):603-12. PubMed ID: 7948676 [TBL] [Abstract][Full Text] [Related]
6. Supra-physiological membrane potential induced conformational changes in K+ channel conducting system of skeletal muscle fibers. Chen W Bioelectrochemistry; 2004 Apr; 62(1):47-56. PubMed ID: 14990325 [TBL] [Abstract][Full Text] [Related]
7. Non-linear microscale alterations in membrane transport by electropermeabilization. Gowrishankar TR; Chen W; Lee RC Ann N Y Acad Sci; 1998 Sep; 858():205-16. PubMed ID: 9917820 [TBL] [Abstract][Full Text] [Related]
8. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers. Laurienti PJ; Blankenship JE J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271 [TBL] [Abstract][Full Text] [Related]
9. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber. Hui CS; Chandler WK J Gen Physiol; 1990 Aug; 96(2):257-97. PubMed ID: 2212983 [TBL] [Abstract][Full Text] [Related]
10. Passive electrical properties and voltage dependent membrane capacitance of single skeletal muscle fibers. Takashima S Pflugers Arch; 1985 Feb; 403(2):197-204. PubMed ID: 3872444 [TBL] [Abstract][Full Text] [Related]
11. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. Almers W; Palade PT J Physiol; 1981 Mar; 312():159-76. PubMed ID: 6267261 [TBL] [Abstract][Full Text] [Related]
12. Voltage clamp experiments of single muscle fibers of Rana pipiens. Moore LE J Gen Physiol; 1972 Jul; 60(1):1-19. PubMed ID: 4537778 [TBL] [Abstract][Full Text] [Related]
13. Modes of hexamethonium action on acetylcholine receptor channels in frog skeletal muscle. Adams DJ; Bevan S; Terrar DA Br J Pharmacol; 1991 Jan; 102(1):135-45. PubMed ID: 1710523 [TBL] [Abstract][Full Text] [Related]
14. Effects of sulfhydryl inhibitors on nonlinear membrane currents in frog skeletal muscle fibers. Gonzalez A; Bolaños P; Caputo C J Gen Physiol; 1993 Mar; 101(3):425-51. PubMed ID: 7682597 [TBL] [Abstract][Full Text] [Related]
15. Intrinsic optical and passive electrical properties of cut frog twitch fibers. Irving M; Maylie J; Sizto NL; Chandler WK J Gen Physiol; 1987 Jan; 89(1):1-40. PubMed ID: 3494099 [TBL] [Abstract][Full Text] [Related]
16. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. Brum G; Rios E J Physiol; 1987 Jun; 387():489-517. PubMed ID: 3116215 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Gowrishankar TR; Pliquett U; Lee RC Ann N Y Acad Sci; 1999 Oct; 888():195-210. PubMed ID: 10842634 [TBL] [Abstract][Full Text] [Related]
18. Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres. Szentesi P; Jacquemond V; Kovács L; Csernoch L J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):371-84. PubMed ID: 9423180 [TBL] [Abstract][Full Text] [Related]
19. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers. Huang CL; Peachey LD J Gen Physiol; 1989 Mar; 93(3):565-84. PubMed ID: 2784827 [TBL] [Abstract][Full Text] [Related]
20. Existence of Q gamma in frog cut twitch fibers with little Q beta. Chen W; Hui CS Biophys J; 1991 Feb; 59(2):503-7. PubMed ID: 2009363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]