These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8011915)

  • 41. A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes.
    Giménez-Abián JF; Clarke DJ; Mullinger AM; Downes CS; Johnson RT
    J Cell Biol; 1995 Oct; 131(1):7-17. PubMed ID: 7559788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assaying topoisomerase II checkpoints in yeast.
    Furniss K; Vas AC; Lane A; Clarke DJ
    Methods Mol Biol; 2009; 582():167-87. PubMed ID: 19763950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibitors of topoisomerase II delay progress through mitosis and induce a doubling of the DNA content in CHO cells.
    Sumner AT
    Exp Cell Res; 1995 Apr; 217(2):440-7. PubMed ID: 7698244
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of nonhistone proteins in the chromosomal events of mitosis.
    Earnshaw WC; Mackay AM
    FASEB J; 1994 Sep; 8(12):947-56. PubMed ID: 8088460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes.
    Razin SV; Mantieva VL; Georgiev GP
    Nucleic Acids Res; 1979 Nov; 7(6):1713-35. PubMed ID: 503867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of metaphase chromosomes: a role for effects of macromolecular crowding.
    Hancock R
    PLoS One; 2012; 7(4):e36045. PubMed ID: 22540018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The SMC proteins and the coming of age of the chromosome scaffold hypothesis.
    Saitoh N; Goldberg I; Earnshaw WC
    Bioessays; 1995 Sep; 17(9):759-66. PubMed ID: 8763828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities.
    Li G; Tolstonog GV; Sabasch M; Traub P
    DNA Cell Biol; 2002 Oct; 21(10):743-69. PubMed ID: 12443544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosomes with two intact axial cores are induced by G2 checkpoint override: evidence that DNA decatenation is not required to template the chromosome structure.
    Andreassen PR; Lacroix FB; Margolis RL
    J Cell Biol; 1997 Jan; 136(1):29-43. PubMed ID: 9008701
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts.
    Hirano T; Mitchison TJ
    J Cell Biol; 1993 Feb; 120(3):601-12. PubMed ID: 8381118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Molecule Micromanipulation and Super-Resolution Imaging Resolve Nanodomains Underlying Chromatin Folding in Mitotic Chromosomes.
    Wang J; Hu C; Chen X; Li Y; Sun J; Czajkowsky DM; Shao Z
    ACS Nano; 2022 May; 16(5):8030-8039. PubMed ID: 35485433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic organization of mitotic chromosomes.
    Kinoshita K; Hirano T
    Curr Opin Cell Biol; 2017 Jun; 46():46-53. PubMed ID: 28214612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of the chromosome scaffold and intermediates of loop domain compaction in extracted mitotic cells.
    Sheval EV; Polyakov VY
    Cell Biol Int; 2006 Dec; 30(12):1028-40. PubMed ID: 17029868
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytological analysis of chromosome structural defects that result from topoisomerase II dysfunction.
    Giménez-Abián JF; Clarke DJ
    Methods Mol Biol; 2009; 582():189-207. PubMed ID: 19763951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From a melt of rings to chromosome territories: the role of topological constraints in genome folding.
    Halverson JD; Smrek J; Kremer K; Grosberg AY
    Rep Prog Phys; 2014; 77(2):022601. PubMed ID: 24472896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fractal model of chromosomes and chromosomal DNA replication.
    Takahashi M
    J Theor Biol; 1989 Nov; 141(1):117-36. PubMed ID: 2699341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations.
    Gaulden ME
    Mutagenesis; 1987 Sep; 2(5):357-65. PubMed ID: 2830453
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome Organization and Chromosome Architecture.
    Bernardi G
    Cold Spring Harb Symp Quant Biol; 2015; 80():83-91. PubMed ID: 26801160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biophysical study of the globular organisation of interphase chromosomes.
    Eidelman Y; Andreev SG
    Radiat Prot Dosimetry; 2002; 99(1-4):217-8. PubMed ID: 12194288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topoisomerase II cleavage activity within the human D11Z1 and DXZ1 alpha-satellite arrays.
    Spence JM; Fournier RE; Oshimura M; Regnier V; Farr CJ
    Chromosome Res; 2005; 13(6):637-48. PubMed ID: 16170628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.