These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8011916)
1. Photoinduced volume changes associated with the early transformations of bacteriorhodopsin: a laser-induced optoacoustic spectroscopy study. Schulenberg PJ; Rohr M; Gärtner W; Braslavsky SE Biophys J; 1994 Mar; 66(3 Pt 1):838-43. PubMed ID: 8011916 [TBL] [Abstract][Full Text] [Related]
2. Chromophore reorientations in the early photolysis intermediates of bacteriorhodopsin. Esquerra RM; Che D; Shapiro DB; Lewis JW; Bogomolni RA; Fukushima J; Kliger DS Biophys J; 1996 Feb; 70(2):962-70. PubMed ID: 8789113 [TBL] [Abstract][Full Text] [Related]
3. Volume and enthalpy changes in the early steps of bacteriorhodopsin photocycle studied by time-resolved photoacoustics. Zhang D; Mauzerall D Biophys J; 1996 Jul; 71(1):381-8. PubMed ID: 8804620 [TBL] [Abstract][Full Text] [Related]
4. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. van Brederode ME; Gensch T; Hoff WD; Hellingwerf KJ; Braslavsky SE Biophys J; 1995 Mar; 68(3):1101-9. PubMed ID: 7756529 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis. Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE Biophys J; 1999 Dec; 77(6):3277-86. PubMed ID: 10585949 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarum. Losi A; Braslavsky SE; Gärtner W; Spudich JL Biophys J; 1999 Apr; 76(4):2183-91. PubMed ID: 10096912 [TBL] [Abstract][Full Text] [Related]
7. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin. Druckmann S; Heyn MP; Lanyi JK; Ottolenghi M; Zimanyi L Biophys J; 1993 Sep; 65(3):1231-4. PubMed ID: 8241403 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the first phase of the reprotonation switch of bacteriorhodopsin from time-resolved photovoltage and flash photolysis experiments on the photoreversal of the M-intermediate. Dickopf S; Heyn MP Biophys J; 1997 Dec; 73(6):3171-81. PubMed ID: 9414229 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of primary events in the photocycle of excited bacteriorhodopsin. Lu JJ; Ming M; Yang Y; Wu J; Li B; Ding JD; Li QG; Qian SX Acta Biochim Biophys Sin (Shanghai); 2004 Nov; 36(11):724-8. PubMed ID: 15514845 [TBL] [Abstract][Full Text] [Related]
11. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Ludmann K; Gergely C; Dér A; Váró G Biophys J; 1998 Dec; 75(6):3120-6. PubMed ID: 9826632 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared spectroscopic analysis of altered reaction pathways in site-directed mutants: the D212N mutant of bacteriorhodopsin expressed in Halobacterium halobium. Braiman MS; Klinger AL; Doebler R Biophys J; 1992 Apr; 62(1):56-8. PubMed ID: 1600099 [No Abstract] [Full Text] [Related]
14. Time-resolved thermodynamic changes photoinduced in 5,12-trans-locked bacteriorhodopsin. Evidence that retinal isomerization is required for protein activation. Losi A; Michler I; Gärtner W; Braslavsky SE Photochem Photobiol; 2000 Nov; 72(5):590-7. PubMed ID: 11107843 [TBL] [Abstract][Full Text] [Related]
15. Charge displacement in bacteriorhodopsin during the forward and reverse bR-K phototransition. Groma GI; Hebling J; Ludwig C; Kuhl J Biophys J; 1995 Nov; 69(5):2060-5. PubMed ID: 8580349 [TBL] [Abstract][Full Text] [Related]
16. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639 [TBL] [Abstract][Full Text] [Related]
17. Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway. Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE Biophys J; 2000 May; 78(5):2581-9. PubMed ID: 10777754 [TBL] [Abstract][Full Text] [Related]
18. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode. Robertson B; Lukashev EP Biophys J; 1995 Apr; 68(4):1507-17. PubMed ID: 7787036 [TBL] [Abstract][Full Text] [Related]
19. Dimeric-like kinetic cooperativity of the bacteriorhodopsin molecules in purple membranes. Tokaji Z Biophys J; 1993 Sep; 65(3):1130-4. PubMed ID: 8241392 [TBL] [Abstract][Full Text] [Related]
20. A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane. Chen Z; Sheves M; Lewis A; Bouevitch O Biophys J; 1994 Sep; 67(3):1155-60. PubMed ID: 7811928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]