BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8012580)

  • 1. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically.
    Steels EL; Learmonth RP; Watson K
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():569-76. PubMed ID: 8012580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.
    Moraitis C; Curran BP
    Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose.
    Swan TM; Watson K
    Can J Microbiol; 1999 Jun; 45(6):472-9. PubMed ID: 10453475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae.
    Guerzoni ME; Ferruzzi M; Sinigaglia M; Criscuoli GC
    Can J Microbiol; 1997 Jun; 43(6):569-76. PubMed ID: 9226876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae.
    Thomas DS; Hossack JA; Rose AH
    Arch Microbiol; 1978 Jun; 117(3):239-45. PubMed ID: 358937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.
    Wang Q; Du X; Ma K; Shi P; Liu W; Sun J; Peng M; Huang Z
    Microbiol Res; 2018 Mar; 207():1-7. PubMed ID: 29458843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae.
    Davidson JF; Schiestl RH
    J Bacteriol; 2001 Aug; 183(15):4580-7. PubMed ID: 11443093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus.
    Mols M; Pier I; Zwietering MH; Abee T
    Int J Food Microbiol; 2009 Nov; 135(3):303-11. PubMed ID: 19762101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae.
    Davidson JF; Whyte B; Bissinger PH; Schiestl RH
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5116-21. PubMed ID: 8643537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts.
    Vázquez J; Grillitsch K; Daum G; Mas A; Beltran G; Torija MJ
    Food Microbiol; 2019 Apr; 78():143-154. PubMed ID: 30497596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of unsaturated fatty acids by Saccharomyces cerevisiae: conservation of fatty-acyl saturation in phosphatidylinositol.
    Pilkington BJ; Rose AH
    Yeast; 1991 Jul; 7(5):489-94. PubMed ID: 1897314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids.
    da Costa BLV; Raghavendran V; Franco LFM; Chaves Filho AB; Yoshinaga MY; Miyamoto S; Basso TO; Gombert AK
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells.
    Jollow D; Kellerman GM; Linnane AW
    J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally-induced changes in the neutral lipids and intracellular vesicles of Saccharomyces cerevisiae and Kluyveromyces fragilis.
    Hossack JA; Belk DM; Rose AH
    Arch Microbiol; 1977 Aug; 114(2):137-42. PubMed ID: 334099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of conditions of growth on the endogenous metabolism of Saccharomyces cerevisiae: effect on protein, carbohydrate, sterol and fatty acid content and on viability.
    Wilson K; McLeod BJ
    Antonie Van Leeuwenhoek; 1976; 42(4):397-410. PubMed ID: 797316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae cultured under aerobic and anaerobic conditions: air-level oxygen stress and protection against stress.
    Ohmori S; Nawata Y; Kiyono K; Murata H; Tsuboi S; Ikeda M; Akagi R; Morohashi KI; Ono B
    Biochim Biophys Acta; 1999 Nov; 1472(3):587-94. PubMed ID: 10564773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae.
    Pereira MD; Eleutherio EC; Panek AD
    BMC Microbiol; 2001; 1():11. PubMed ID: 11483159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response.
    Chatterjee MT; Khalawan SA; Curran BPG
    Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():3063-3068. PubMed ID: 9308188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide.
    Flattery-O'Brien J; Collinson LP; Dawes IW
    J Gen Microbiol; 1993 Mar; 139(3):501-7. PubMed ID: 8473859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition.
    Avery SV; Howlett NG; Radice S
    Appl Environ Microbiol; 1996 Nov; 62(11):3960-6. PubMed ID: 8899983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.