These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 8012580)
1. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Steels EL; Learmonth RP; Watson K Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():569-76. PubMed ID: 8012580 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Moraitis C; Curran BP Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153 [TBL] [Abstract][Full Text] [Related]
3. Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Swan TM; Watson K Can J Microbiol; 1999 Jun; 45(6):472-9. PubMed ID: 10453475 [TBL] [Abstract][Full Text] [Related]
4. Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae. Guerzoni ME; Ferruzzi M; Sinigaglia M; Criscuoli GC Can J Microbiol; 1997 Jun; 43(6):569-76. PubMed ID: 9226876 [TBL] [Abstract][Full Text] [Related]
5. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Thomas DS; Hossack JA; Rose AH Arch Microbiol; 1978 Jun; 117(3):239-45. PubMed ID: 358937 [TBL] [Abstract][Full Text] [Related]
6. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity. Wang Q; Du X; Ma K; Shi P; Liu W; Sun J; Peng M; Huang Z Microbiol Res; 2018 Mar; 207():1-7. PubMed ID: 29458843 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. Davidson JF; Schiestl RH J Bacteriol; 2001 Aug; 183(15):4580-7. PubMed ID: 11443093 [TBL] [Abstract][Full Text] [Related]
8. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus. Mols M; Pier I; Zwietering MH; Abee T Int J Food Microbiol; 2009 Nov; 135(3):303-11. PubMed ID: 19762101 [TBL] [Abstract][Full Text] [Related]
9. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Davidson JF; Whyte B; Bissinger PH; Schiestl RH Proc Natl Acad Sci U S A; 1996 May; 93(10):5116-21. PubMed ID: 8643537 [TBL] [Abstract][Full Text] [Related]
10. The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Vázquez J; Grillitsch K; Daum G; Mas A; Beltran G; Torija MJ Food Microbiol; 2019 Apr; 78():143-154. PubMed ID: 30497596 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of unsaturated fatty acids by Saccharomyces cerevisiae: conservation of fatty-acyl saturation in phosphatidylinositol. Pilkington BJ; Rose AH Yeast; 1991 Jul; 7(5):489-94. PubMed ID: 1897314 [TBL] [Abstract][Full Text] [Related]
12. Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids. da Costa BLV; Raghavendran V; Franco LFM; Chaves Filho AB; Yoshinaga MY; Miyamoto S; Basso TO; Gombert AK FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425576 [TBL] [Abstract][Full Text] [Related]
13. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. Jollow D; Kellerman GM; Linnane AW J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785 [TBL] [Abstract][Full Text] [Related]
14. Environmentally-induced changes in the neutral lipids and intracellular vesicles of Saccharomyces cerevisiae and Kluyveromyces fragilis. Hossack JA; Belk DM; Rose AH Arch Microbiol; 1977 Aug; 114(2):137-42. PubMed ID: 334099 [TBL] [Abstract][Full Text] [Related]
15. The influence of conditions of growth on the endogenous metabolism of Saccharomyces cerevisiae: effect on protein, carbohydrate, sterol and fatty acid content and on viability. Wilson K; McLeod BJ Antonie Van Leeuwenhoek; 1976; 42(4):397-410. PubMed ID: 797316 [TBL] [Abstract][Full Text] [Related]
16. Saccharomyces cerevisiae cultured under aerobic and anaerobic conditions: air-level oxygen stress and protection against stress. Ohmori S; Nawata Y; Kiyono K; Murata H; Tsuboi S; Ikeda M; Akagi R; Morohashi KI; Ono B Biochim Biophys Acta; 1999 Nov; 1472(3):587-94. PubMed ID: 10564773 [TBL] [Abstract][Full Text] [Related]
17. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. Pereira MD; Eleutherio EC; Panek AD BMC Microbiol; 2001; 1():11. PubMed ID: 11483159 [TBL] [Abstract][Full Text] [Related]
18. Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response. Chatterjee MT; Khalawan SA; Curran BPG Microbiology (Reading); 1997 Sep; 143 ( Pt 9)():3063-3068. PubMed ID: 9308188 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. Flattery-O'Brien J; Collinson LP; Dawes IW J Gen Microbiol; 1993 Mar; 139(3):501-7. PubMed ID: 8473859 [TBL] [Abstract][Full Text] [Related]
20. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Avery SV; Howlett NG; Radice S Appl Environ Microbiol; 1996 Nov; 62(11):3960-6. PubMed ID: 8899983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]