These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8012584)

  • 21. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.
    Nally MC; Pesce VM; Maturano YP; Rodriguez Assaf LA; Toro ME; Castellanos de Figueroa LI; Vazquez F
    Int J Food Microbiol; 2015 Jul; 204():91-100. PubMed ID: 25863340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of an endochitinase gene (ThEn-42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi.
    Deng S; Lorito M; Penttilä M; Harman GE
    Appl Biochem Biotechnol; 2007 Jul; 142(1):81-94. PubMed ID: 18025571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants.
    Bolar JP; Norelli JL; Harman GE; Brown SK; Aldwinckle HS
    Transgenic Res; 2001 Dec; 10(6):533-43. PubMed ID: 11817541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal properties of surangin B, a coumarin from Mammea longifolia.
    Deng Y; Nicholson RA
    Planta Med; 2005 Apr; 71(4):364-5. PubMed ID: 15856416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea.
    Sasanuma I; Suzuki T
    Biosci Biotechnol Biochem; 2016 Sep; 80(9):1730-6. PubMed ID: 26998660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.
    Banani H; Spadaro D; Zhang D; Matic S; Garibaldi A; Gullino ML
    Int J Food Microbiol; 2014 Jul; 182-183():1-8. PubMed ID: 24854386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory activity of dihydrosanguinarine and dihydrochelerythrine against phytopathogenic fungi.
    Feng G; Zhang J; Liu YQ
    Nat Prod Res; 2011 Jul; 25(11):1082-9. PubMed ID: 21500094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum.
    Inbar J; Chet I
    Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2823-9. PubMed ID: 8535510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ultraviolet-induced mutants of Trichoderma harzianum with altered antibiotic production on selected pathogens in vitro.
    Graeme-Cook KA; Faull JL
    Can J Microbiol; 1991 Sep; 37(9):659-64. PubMed ID: 1954580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy of alkaloid (-)-corypalmine against spore germination of some fungi.
    Maurya S; Srivastava JS; Jha RN; Pandey VB; Singh UP
    Folia Microbiol (Praha); 2002; 47(3):287-90. PubMed ID: 12094740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus.
    Broadway RM; Williams DL; Kain WC; Harman GE; Lorito M; Labeda DP
    Lett Appl Microbiol; 1995 May; 20(5):271-6. PubMed ID: 7766226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interference of bio-control Trichoderma to enhance physical and physiological strength of sugarcane during Pokkah boeng infection.
    Tiwari R; Chandra K; Shukla SK; Jaiswal VP; Amaresan N; Srivastava AK; Gaur A; Sahni D; Tiwari RK
    World J Microbiol Biotechnol; 2022 Jun; 38(8):139. PubMed ID: 35705749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies of the antifungal compounds produced by Erwinia herbicola.
    Adetuyi FC
    Indian J Pathol Microbiol; 1990 Jan; 33(1):48-52. PubMed ID: 2394476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9.
    Nguyen NV; Kim YJ; Oh KT; Jung WJ; Park RD
    Curr Microbiol; 2008 Jan; 56(1):28-32. PubMed ID: 17896135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.
    Mahlo SM; Chauke HR; McGaw L; Eloff J
    Afr J Tradit Complement Altern Med; 2016; 13(4):216-222. PubMed ID: 28852739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi.
    Kumar V; Mathela CS; Tewari AK; Bisht KS
    Pestic Biochem Physiol; 2014 Sep; 114():67-71. PubMed ID: 25175652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production.
    Aktuganov G; Melentjev A; Galimzianova N; Khalikova E; Korpela T; Susi P
    Can J Microbiol; 2008 Jul; 54(7):577-87. PubMed ID: 18641704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of lytic enzymes by Trichoderma spp. and their effect on the growth of phytopathogenic fungi.
    Witkowska D; Maj A
    Folia Microbiol (Praha); 2002; 47(3):279-82. PubMed ID: 12094738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.