BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8012687)

  • 41. Comparative renal effects of calcium channel blockers in conscious spontaneously hypertensive rats.
    Vemulapalli S; Chiu PJ; Sybertz EJ
    Arch Int Pharmacodyn Ther; 1987 Jun; 287(2):309-22. PubMed ID: 2888444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium ion dependence of myogenic renal plasma flow autoregulation: evidence from the isolated perfused rat kidney.
    Cohen AJ; Fray JC
    J Physiol; 1982 Sep; 330():449-60. PubMed ID: 7175750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antihypertensive effects of MPC-1304, a novel calcium antagonist, in experimental hypertensive rats and dogs.
    Kanda A; Haruno A; Miyake H; Nagasaka M
    J Cardiovasc Pharmacol; 1992; 20(5):723-30. PubMed ID: 1280733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autoregulation of zonal glomerular filtration rate and renal blood flow in spontaneously hypertensive rats.
    Wang X; Aukland K; Ofstad J; Iversen BM
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F515-21. PubMed ID: 7485536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of a calcium channel blocker, manidipine hydrochloride, on the regulatory mechanism of glomerular capillary pressure in SHR.
    Onuki T
    Nihon Jinzo Gakkai Shi; 1995 Feb; 37(2):119-26. PubMed ID: 7752503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reactivity and sensitivity of mesenteric vascular beds and aortic rings of spontaneously hypertensive rats to endothelin: effects of calcium entry blockers.
    Criscione L; Nellis P; Riniker B; Thomann H; Burdet R
    Br J Pharmacol; 1990 May; 100(1):31-6. PubMed ID: 2196966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The contribution of adrenoceptor subtype(s) in the renal vasculature of diabetic spontaneously hypertensive rats.
    Armenia A; Munavvar AS; Abdullah NA; Helmi A; Johns EJ
    Br J Pharmacol; 2004 Jun; 142(4):719-26. PubMed ID: 15172958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of long-term treatment with the calcium antagonist AE0047 on cerebrovascular autoregulation and hypertrophy in spontaneously hypertensive rats.
    Shinyama H; Nagai H; Kawamura T; Narita Y; Nakamura N; Kagitani Y
    J Cardiovasc Pharmacol; 1997 Nov; 30(5):616-22. PubMed ID: 9388044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Hypotensive effect of a new calcium antagonist, SR 33557 in conscious rats].
    Lacour C; Canals F; Galindo G; Chatelain P; Nisato D
    Arch Mal Coeur Vaiss; 1990 Jul; 83(8):1281-4. PubMed ID: 2124468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic autoregulation and renal injury in Dahl rats.
    Karlsen FM; Andersen CB; Leyssac PP; Holstein-Rathlou NH
    Hypertension; 1997 Oct; 30(4):975-83. PubMed ID: 9336403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of salt loading and nitrendipine on dihydropyridine receptors in hypertensive rats.
    Garthoff B; Bellemann P
    J Cardiovasc Pharmacol; 1987; 10 Suppl 10():S36-9. PubMed ID: 2455136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osmotic hypertonicity of the renal medulla during changes in renal perfusion pressure in the rat.
    Dobrowolski L; Badzyńska B; Walkowska A; Sadowski J
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):929-35. PubMed ID: 9518743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acute effects of angiotensin II receptor antagonist on autoregulation of zonal glomerular filtration rate in renovascular hypertensive rats.
    Wang X; Aukland K; Iversen BM
    Kidney Blood Press Res; 1997; 20(4):225-32. PubMed ID: 9398027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response of the rat mesenteric vasculature to chronic treatment with nitrendipine alone and in combination with atenolol: evidence of a significant drug interaction.
    Draper AJ; Kingsbury MP; Redfern PH; Todd MH
    J Auton Pharmacol; 1993 Aug; 13(4):281-9. PubMed ID: 8408099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrendipine reverses vasoconstriction and renal hemodynamic changes in experimental hypertension.
    Sterzel RB; Huelsemann JL; McKenzie DE; Wilcox CS
    J Cardiovasc Pharmacol; 1984; 6 Suppl 7():S1024-7. PubMed ID: 6085360
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitric oxide synthase activity in renal cortex and medulla of normotensive and spontaneously hypertensive rats.
    Nava E; Llinás MT; Gonzalez JD; Salazar FJ
    Am J Hypertens; 1996 Dec; 9(12 Pt 1):1236-9. PubMed ID: 8972897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitrendipine and other calcium entry blockers (calcium antagonists) in hypertension.
    Kazda S; Garthoff B; Knorr A
    Fed Proc; 1983 Feb; 42(2):196-200. PubMed ID: 6822291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The cardiovascular and renal functional responses to the 5-HT1A receptor agonist flesinoxan in two rat models of hypertension.
    Chamienia AL; Johns EJ
    Br J Pharmacol; 1996 Aug; 118(8):1891-8. PubMed ID: 8864520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergism of hydrochlorothiazide and nitrendipine on reduction of blood pressure and blood pressure variability in spontaneously hypertensive rats.
    Han P; Chu ZX; Shen FM; Xie HH; Su DF
    Acta Pharmacol Sin; 2006 Dec; 27(12):1575-9. PubMed ID: 17112411
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lacidipine: a calcium antagonist with potent and long-lasting antihypertensive effects in animal studies.
    Micheli D; Collodel A; Semeraro C; Gaviraghi G; Carpi C
    J Cardiovasc Pharmacol; 1990 Apr; 15(4):666-75. PubMed ID: 1691398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.