BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8012866)

  • 1. Age-related differences in cross-sectional geometry of the forearm bones in healthy women.
    Bouxsein ML; Myburgh KH; van der Meulen MC; Lindenberger E; Marcus R
    Calcif Tissue Int; 1994 Feb; 54(2):113-8. PubMed ID: 8012866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna.
    Hsu ES; Patwardhan AG; Meade KP; Light TR; Martin WR
    J Biomech; 1993 Nov; 26(11):1307-18. PubMed ID: 8262992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of age, grip strength and smoking on forearm volumetric bone mineral density and bone geometry by peripheral quantitative computed tomography: comparisons between female and male.
    Kaji H; Kosaka R; Yamauchi M; Kuno K; Chihara K; Sugimoto T
    Endocr J; 2005 Dec; 52(6):659-66. PubMed ID: 16410656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women.
    Heinonen A; Sievänen H; Kannus P; Oja P; Vuori I
    J Bone Miner Res; 1996 Apr; 11(4):490-501. PubMed ID: 8992880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific advantages in skeletal geometry and strength at the proximal femur and forearm in young female gymnasts.
    Dowthwaite JN; Rosenbaum PF; Scerpella TA
    Bone; 2012 May; 50(5):1173-83. PubMed ID: 22342799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo assessment of forearm bone mass and ulnar bending stiffness in healthy men.
    Myburgh KH; Zhou LJ; Steele CR; Arnaud S; Marcus R
    J Bone Miner Res; 1992 Nov; 7(11):1345-50. PubMed ID: 1466258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study.
    Szulc P; Delmas PD
    Osteoporos Int; 2007 Apr; 18(4):495-503. PubMed ID: 17253119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age- and Sex-Related Changes in Bone Microarchitecture and Estimated Strength: A Three-Year Prospective Study Using HRpQCT.
    Shanbhogue VV; Brixen K; Hansen S
    J Bone Miner Res; 2016 Aug; 31(8):1541-9. PubMed ID: 26896351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric variables from DXA of the radius predict forearm fracture load in vitro.
    Myers ER; Hecker AT; Rooks DS; Hipp JA; Hayes WC
    Calcif Tissue Int; 1993 Mar; 52(3):199-204. PubMed ID: 8481832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing.
    Ducher G; Prouteau S; Courteix D; Benhamou CL
    J Clin Densitom; 2004; 7(4):399-405. PubMed ID: 15618600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occupation-dependent loading increases bone strength in men.
    Biver E; Perréard Lopreno G; Hars M; van Rietbergen B; Vallée JP; Ferrari S; Besse M; Rizzoli R
    Osteoporos Int; 2016 Mar; 27(3):1169-1179. PubMed ID: 26576541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of radial bone density as measured by PQCT in pre- and postmenopausal women: the role of bone size.
    Wapniarz M; Lehmann R; Reincke M; Schönau E; Klein K; Allolio B
    J Bone Miner Res; 1997 Feb; 12(2):248-54. PubMed ID: 9041057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study.
    Alvarenga JC; Fuller H; Pasoto SG; Pereira RM
    Osteoporos Int; 2017 Apr; 28(4):1335-1346. PubMed ID: 27981337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players.
    Ireland A; Maden-Wilkinson T; McPhee J; Cooke K; Narici M; Degens H; Rittweger J
    Med Sci Sports Exerc; 2013 Sep; 45(9):1749-58. PubMed ID: 23475166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.
    Belavý DL; Armbrecht G; Blenk T; Bock O; Börst H; Kocakaya E; Luhn F; Rantalainen T; Rawer R; Tomasius F; Willnecker J; Felsenberg D
    Bone; 2016 Feb; 83():119-126. PubMed ID: 26541093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-sectional geometrical properties of distal radius and ulna in large, medium and toy breed dogs.
    Brianza SZ; Delise M; Maddalena Ferraris M; D'Amelio P; Botti P
    J Biomech; 2006; 39(2):302-11. PubMed ID: 16321632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forearm bone geometry and mineral content in UK women of European and South-Asian origin.
    Ward KA; Roy DK; Pye SR; O'Neill TW; Berry JL; Swarbrick CM; Silman AJ; Adams JE
    Bone; 2007 Jul; 41(1):117-21. PubMed ID: 17493888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of pQCT parameters between ulna and radius in retired elite gymnasts: the skeletal benefits associated with long-term gymnastics are bone- and site-specific.
    Ducher G; Hill BL; Angeli T; Bass SL; Eser P
    J Musculoskelet Neuronal Interact; 2009; 9(4):247-55. PubMed ID: 19949282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle size, strength, and bone geometry in the upper limbs of young and old men.
    Klein CS; Allman BL; Marsh GD; Rice CL
    J Gerontol A Biol Sci Med Sci; 2002 Jul; 57(7):M455-9. PubMed ID: 12084808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.