These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 8012907)

  • 1. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals.
    Javaid R; Sabir A; Sheikh N; Ferhan M
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin peroxidase functionalities and prospective applications.
    Falade AO; Nwodo UU; Iweriebor BC; Green E; Mabinya LV; Okoh AI
    Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27605423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolymerization of biorefinery lignin by improved laccases of the white-rot fungus Obba rivulosa.
    Wallenius J; Kontro J; Lyra C; Kuuskeri J; Wan X; Kähkönen MA; Baig I; Kamer PCJ; Sipilä J; Mäkelä MR; Nousiainen P; Hildén K
    Microb Biotechnol; 2021 Sep; 14(5):2140-2151. PubMed ID: 34310858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization.
    Rodríguez-Escribano D; de Salas F; Pardo I; Camarero S
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28820431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Syringyl Mediators Accelerate Laccase-Catalyzed β-O-4 Cleavage and Cα-Oxidation of a Guaiacyl Model Substrate via an Aggregation Mechanism.
    Chen X; Ouyang X; Li J; Zhao YL
    ACS Omega; 2021 Sep; 6(35):22578-22588. PubMed ID: 34514230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants.
    Pardo I; Camarero S
    Molecules; 2015 Sep; 20(9):15929-43. PubMed ID: 26364626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional screening pipeline to uncover laccase-like multicopper oxidase enzymes that transform industrial lignins.
    Sharan AA; Bellemare A; DiFalco M; Tsang A; Vuong TV; Edwards EA; Master ER
    Bioresour Technol; 2024 Feb; 393():130084. PubMed ID: 38000639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase.
    Silva D; Sousa AC; Robalo MP; Martins LO
    N Biotechnol; 2023 Nov; 77():176-184. PubMed ID: 36563877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Laccase Catalysed Tandem Lignin Depolymerisation/Polymerisation.
    Pajer N; Gigli M; Crestini C
    ChemSusChem; 2024 Mar; ():e202301646. PubMed ID: 38470000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal enzyme degradation of lignin-PLA composites: Insights from experiments and molecular docking simulations.
    Esakkimuthu ES; Ponnuchamy V; Mikuljan M; Schwarzkopf M; DeVallance D
    Heliyon; 2024 Jan; 10(1):e23838. PubMed ID: 38192859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil.
    Naranjo-Briceño L; Pernía B; Guerra M; Demey JR; De Sisto A; Inojosa Y; González M; Fusella E; Freites M; Yegres F
    Microb Biotechnol; 2013 Nov; 6(6):720-30. PubMed ID: 23815379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the Rapid Devolatilization of Mineral-Free Lignins.
    Niksa S
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896287
    [No Abstract]   [Full Text] [Related]  

  • 13. Sustainable production of catechol derivatives from waste tung nutshell C/G-type lignin
    Zhu G; Xie H; Ye D; Zhang J; Huang K; Liao B; Chen J
    RSC Adv; 2024 Feb; 14(8):5069-5076. PubMed ID: 38332785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorine cycling and the fate of Cl in terrestrial environments.
    Svensson T; Kylin H; Montelius M; Sandén P; Bastviken D
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):7691-7709. PubMed ID: 33400105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of manganese peroxidase and laccase production in the South American fungus Fomes sclerodermeus (Lév.) Cke.
    Papinutti VL; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Sep; 30(9):536-41. PubMed ID: 12905074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradability of chlorine-free bleachery effluent lignins by two fungi: effects on lignin subunit type and on polymer molecular weight.
    Bergbauer M; Eggert C
    Can J Microbiol; 1994 Mar; 40(3):192-7. PubMed ID: 8012907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent.
    Rocha-Santos T; Ferreira F; Silva L; Freitas AC; Pereira R; Diniz M; Castro L; Peres I; Duarte AC
    Environ Sci Pollut Res Int; 2010 May; 17(4):866-74. PubMed ID: 20101467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.