These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 8012907)
1. Degradability of chlorine-free bleachery effluent lignins by two fungi: effects on lignin subunit type and on polymer molecular weight. Bergbauer M; Eggert C Can J Microbiol; 1994 Mar; 40(3):192-7. PubMed ID: 8012907 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of paper and pulp mill effluents. Murugesan K Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490 [TBL] [Abstract][Full Text] [Related]
3. Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent. Rocha-Santos T; Ferreira F; Silva L; Freitas AC; Pereira R; Diniz M; Castro L; Peres I; Duarte AC Environ Sci Pollut Res Int; 2010 May; 17(4):866-74. PubMed ID: 20101467 [TBL] [Abstract][Full Text] [Related]
4. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of chlorolignin and lignin-like compounds contained in E1-pulp bleaching effluent by fungal treatment. Soares CH; Duran N Appl Biochem Biotechnol; 2001 Aug; 95(2):135-49. PubMed ID: 11694063 [TBL] [Abstract][Full Text] [Related]
6. Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Minussi RC; Pastore GM; Durán N Bioresour Technol; 2007 Jan; 98(1):158-64. PubMed ID: 16376074 [TBL] [Abstract][Full Text] [Related]
7. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. Bao W; Fukushima Y; Jensen KA; Moen MA; Hammel KE FEBS Lett; 1994 Nov; 354(3):297-300. PubMed ID: 7957943 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of lignin by fungi, bacteria and laccases. Asina F; Brzonova I; Voeller K; Kozliak E; Kubátová A; Yao B; Ji Y Bioresour Technol; 2016 Nov; 220():414-424. PubMed ID: 27598570 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. Bourbonnais R; Paice MG FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094 [TBL] [Abstract][Full Text] [Related]
10. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
11. Preferential degradation of phenolic lignin units by two white rot fungi. Camarero S; Galletti GC; Martínez AT Appl Environ Microbiol; 1994 Dec; 60(12):4509-16. PubMed ID: 7811086 [TBL] [Abstract][Full Text] [Related]
12. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Katagiri N; Tsutsumi Y; Nishida T Appl Environ Microbiol; 1995 Feb; 61(2):617-22. PubMed ID: 7574600 [TBL] [Abstract][Full Text] [Related]
13. Aromatic ring cleavage of a non-phenolic beta-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole. Kawai S; Nakagawa M; Ohashi H FEBS Lett; 1999 Mar; 446(2-3):355-8. PubMed ID: 10100873 [TBL] [Abstract][Full Text] [Related]
14. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Ntougias S; Baldrian P; Ehaliotis C; Nerud F; Merhautová V; Zervakis GI Bioresour Technol; 2015; 189():121-130. PubMed ID: 25879179 [TBL] [Abstract][Full Text] [Related]
15. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Archibald F; Roy B Appl Environ Microbiol; 1992 May; 58(5):1496-9. PubMed ID: 1622216 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water. Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059 [TBL] [Abstract][Full Text] [Related]
17. The early oxidative biodegradation steps of residual kraft lignin models with laccase. Crestini C; Argyropoulos DS Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Levin L; Papinutti L; Forchiassin F Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509 [TBL] [Abstract][Full Text] [Related]
19. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. Eggert C; Temp U; Dean JF; Eriksson KE FEBS Lett; 1996 Aug; 391(1-2):144-8. PubMed ID: 8706903 [TBL] [Abstract][Full Text] [Related]
20. The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. D'Annibale A; Crestini C; Vinciguerra V; Sermanni GG J Biotechnol; 1998 May; 61(3):209-18. PubMed ID: 9684339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]