These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8013402)

  • 41. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles.
    Kirkland D; Aardema M; Müller L; Makoto H
    Mutat Res; 2006 Sep; 608(1):29-42. PubMed ID: 16769241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental design constraints on carcinogenic potency estimates.
    Rieth JP; Starr TB
    J Toxicol Environ Health; 1989; 27(3):287-96. PubMed ID: 2754755
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neonatal mouse assay for tumorigenicity: alternative to the chronic rodent bioassay.
    Flammang TJ; Tungeln LS; Kadlubar FF; Fu PP
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):230-40. PubMed ID: 9356286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative prediction of human cancer risk from rodent carcinogenic potencies: a closer look at the epidemiological evidence for some chemicals not definitively carcinogenic in humans.
    Goodman G; Wilson R
    Regul Toxicol Pharmacol; 1991 Oct; 14(2):118-46. PubMed ID: 1792349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Commentary on "Evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays: the two-year bioassay is no longer necessary".
    Long GG
    Toxicol Pathol; 2010 Apr; 38(3):502-5. PubMed ID: 20124495
    [No Abstract]   [Full Text] [Related]  

  • 46. Human carcinogenic risk evaluation: an alternative approach to the two-year rodent bioassay.
    Cohen SM
    Toxicol Sci; 2004 Aug; 80(2):225-9. PubMed ID: 15129023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards achieving a modern science-based paradigm for agrochemical carcinogenicity assessment.
    Hilton GM; Corvi R; Luijten M; Mehta J; Wolf DC
    Regul Toxicol Pharmacol; 2023 Jan; 137():105301. PubMed ID: 36436696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A perspective on current and future uses of alternative models for carcinogenicity testing.
    Goodman JI
    Toxicol Pathol; 2001; 29 Suppl():173-6. PubMed ID: 11695554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Background and framework for ILSI's collaborative evaluation program on alternative models for carcinogenicity assessment. International Life Sciences Institute.
    Robinson DE; MacDonald JS
    Toxicol Pathol; 2001; 29 Suppl():13-9. PubMed ID: 11695549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer-aided rodent carcinogenicity prediction.
    Lagunin AA; Dearden JC; Filimonov DA; Poroikov VV
    Mutat Res; 2005 Oct; 586(2):138-46. PubMed ID: 16112600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Occupation and cancer - follow-up of 15 million people in five Nordic countries.
    Pukkala E; Martinsen JI; Lynge E; Gunnarsdottir HK; Sparén P; Tryggvadottir L; Weiderpass E; Kjaerheim K
    Acta Oncol; 2009; 48(5):646-790. PubMed ID: 19925375
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laboratory animal tests and human cancer.
    Rall DP
    Drug Metab Rev; 2000 May; 32(2):119-28. PubMed ID: 10774768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prevention versus chemophobia: a defence of rodent carcinogenicity tests.
    Infante PF
    Lancet; 1991 Mar; 337(8740):538-40. PubMed ID: 1671901
    [No Abstract]   [Full Text] [Related]  

  • 54. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How useful are chronic (life-span) toxicology studies in rodents in identifying pharmaceuticals that pose a carcinogenic risk to humans?
    Monro A
    Adverse Drug React Toxicol Rev; 1993; 12(1):5-34. PubMed ID: 8513076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of non-mammalian species in bioassays for carcinogenicity.
    Bunton TE
    IARC Sci Publ; 1999; (146):151-84. PubMed ID: 10353387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How well can in vitro data predict in vivo effects of chemicals? Rodent carcinogenicity as a case study.
    Anthony Tony Cox L; Popken DA; Kaplan AM; Plunkett LM; Becker RA
    Regul Toxicol Pharmacol; 2016 Jun; 77():54-64. PubMed ID: 26879462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neonatal mouse model: review of methods and results.
    McClain RM; Keller D; Casciano D; Fu P; MacDonald J; Popp J; Sagartz J
    Toxicol Pathol; 2001; 29 Suppl():128-37. PubMed ID: 11695548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments.
    Gottmann E; Kramer S; Pfahringer B; Helma C
    Environ Health Perspect; 2001 May; 109(5):509-14. PubMed ID: 11401763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: support for a proposal to modify current regulatory guidelines.
    Sistare FD; Morton D; Alden C; Christensen J; Keller D; Jonghe SD; Storer RD; Reddy MV; Kraynak A; Trela B; Bienvenu JG; Bjurström S; Bosmans V; Brewster D; Colman K; Dominick M; Evans J; Hailey JR; Kinter L; Liu M; Mahrt C; Marien D; Myer J; Perry R; Potenta D; Roth A; Sherratt P; Singer T; Slim R; Soper K; Fransson-Steen R; Stoltz J; Turner O; Turnquist S; van Heerden M; Woicke J; DeGeorge JJ
    Toxicol Pathol; 2011 Jun; 39(4):716-44. PubMed ID: 21666103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.