These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. A structural view of cre-loxp site-specific recombination. Van Duyne GD Annu Rev Biophys Biomol Struct; 2001; 30():87-104. PubMed ID: 11340053 [TBL] [Abstract][Full Text] [Related]
27. Sequential strand exchange by XerC and XerD during site-specific recombination at dif. Blakely GW; Davidson AO; Sherratt DJ J Biol Chem; 2000 Apr; 275(14):9930-6. PubMed ID: 10744667 [TBL] [Abstract][Full Text] [Related]
28. Structural alterations and conformational dynamics in Holliday junctions induced by binding of a site-specific recombinase. Lee J; Voziyanov Y; Pathania S; Jayaram M Mol Cell; 1998 Mar; 1(4):483-93. PubMed ID: 9660933 [TBL] [Abstract][Full Text] [Related]
29. Resolution of synthetic att-site Holliday structures by the integrase protein of bacteriophage lambda. Hsu PL; Landy A Nature; 1984 Oct 25-31; 311(5988):721-6. PubMed ID: 6092961 [TBL] [Abstract][Full Text] [Related]
30. Alterations in the directionality of lambda site-specific recombination catalyzed by mutant integrases in vivo. Christ N; Dröge P J Mol Biol; 1999 May; 288(5):825-36. PubMed ID: 10329182 [TBL] [Abstract][Full Text] [Related]
31. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination. Hazelbaker D; Azaro MA; Landy A J Biol Chem; 2008 May; 283(18):12402-14. PubMed ID: 18319248 [TBL] [Abstract][Full Text] [Related]
32. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution. Gelato KA; Martin SS; Baldwin EP J Mol Biol; 2005 Nov; 354(2):233-45. PubMed ID: 16242714 [TBL] [Abstract][Full Text] [Related]
33. Position and direction of strand exchange in bacteriophage HK022 integration. Kolot M; Yagil E Mol Gen Genet; 1994 Dec; 245(5):623-7. PubMed ID: 7808413 [TBL] [Abstract][Full Text] [Related]
34. Juxtaposition of two viral DNA ends in a bimolecular disintegration reaction mediated by multimers of human immunodeficiency virus type 1 or murine leukemia virus integrase. Chow SA; Brown PO J Virol; 1994 Dec; 68(12):7869-78. PubMed ID: 7966577 [TBL] [Abstract][Full Text] [Related]
35. Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases. Klemm M; Cheng C; Cassell G; Shuman S; Segall AM J Mol Biol; 2000 Jun; 299(5):1203-16. PubMed ID: 10873446 [TBL] [Abstract][Full Text] [Related]
36. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates. Chow SA; Brown PO J Virol; 1994 Jun; 68(6):3896-907. PubMed ID: 8189526 [TBL] [Abstract][Full Text] [Related]
37. A general model for site-specific recombination by the integrase family recombinases. Voziyanov Y; Pathania S; Jayaram M Nucleic Acids Res; 1999 Feb; 27(4):930-41. PubMed ID: 9927723 [TBL] [Abstract][Full Text] [Related]
38. Mapping the λ Integrase bridges in the nucleoprotein Holliday junction intermediates of viral integrative and excisive recombination. Tong W; Warren D; Seah NE; Laxmikanthan G; Van Duyne GD; Landy A Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12366-71. PubMed ID: 25114247 [TBL] [Abstract][Full Text] [Related]
39. Attenuating functions of the C terminus of lambda integrase. Tekle M; Warren DJ; Biswas T; Ellenberger T; Landy A; Nunes-Düby SE J Mol Biol; 2002 Dec; 324(4):649-65. PubMed ID: 12460568 [TBL] [Abstract][Full Text] [Related]