These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8013582)

  • 1. Control of fast elbow movement: a study of electromyographic patterns during movements against unexpectedly decreased inertial load.
    Latash ML
    Exp Brain Res; 1994; 98(1):145-52. PubMed ID: 8013582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyographic responses to an unexpected load in fast voluntary movements: descending regulation of segmental reflexes.
    Shapiro MB; Gottlieb GL; Moore CG; Corcos DM
    J Neurophysiol; 2002 Aug; 88(2):1059-63. PubMed ID: 12163554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMG responses to unexpected perturbations are delayed in slower movements.
    David FJ; Poon C; Niu CM; Corcos DM; Shapiro MB
    Exp Brain Res; 2009 Oct; 199(1):27-38. PubMed ID: 19701630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustments of fast goal-directed movements in response to an unexpected inertial load.
    Smeets JB; Erkelens CJ; Denier van der Gon JJ
    Exp Brain Res; 1990; 81(2):303-12. PubMed ID: 2397758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement-related phasic muscle activation. III. The duration of phasic agonist activity initiating movement.
    Cooke JD; Brown SH
    Exp Brain Res; 1994; 99(3):473-82. PubMed ID: 7957727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of multiple muscles in two degree of freedom elbow movements.
    Sergio LE; Ostry DJ
    Exp Brain Res; 1995; 105(1):123-37. PubMed ID: 7589309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.
    Hatzitaki V; McKinley P
    Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear control of movement distance at the human elbow.
    Gottlieb GL; Chen CH; Corcos DM
    Exp Brain Res; 1996 Nov; 112(2):289-97. PubMed ID: 8951397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm raising in humans under loaded vs. unloaded and bipedal vs. unipedal conditions.
    Vernazza-Martin S; Martin N; Cincera M; Pedotti A; Massion J
    Brain Res; 1999 Oct; 846(1):12-22. PubMed ID: 10536209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states.
    Tal'nov AN; Cherkassky VL; Kostyukov AI
    Neuroscience; 1997 Aug; 79(3):923-33. PubMed ID: 9219955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.