These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8013585)

  • 1. Representation of the body in the lateral striatum of the freely moving rat: single neurons related to licking.
    Mittler T; Cho J; Peoples LL; West MO
    Exp Brain Res; 1994; 98(1):163-7. PubMed ID: 8013585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of the body by single neurons in the dorsolateral striatum of the awake, unrestrained rat.
    Carelli RM; West MO
    J Comp Neurol; 1991 Jul; 309(2):231-49. PubMed ID: 1885787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements.
    West MO; Carelli RM; Pomerantz M; Cohen SM; Gardner JP; Chapin JK; Woodward DJ
    J Neurophysiol; 1990 Oct; 64(4):1233-46. PubMed ID: 2258744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributions of single neurons related to body parts in the lateral striatum of the rat.
    Cho J; West MO
    Brain Res; 1997 May; 756(1-2):241-6. PubMed ID: 9187338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of cue-evoked firing in rat dorsolateral striatum neurons.
    Root DH; Tang CC; Ma S; Pawlak AP; West MO
    Behav Brain Res; 2010 Jul; 211(1):23-32. PubMed ID: 20211654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased firing of striatal neurons related to licking during acquisition and overtraining of a licking task.
    Tang CC; Root DH; Duke DC; Zhu Y; Teixeria K; Ma S; Barker DJ; West MO
    J Neurosci; 2009 Nov; 29(44):13952-61. PubMed ID: 19890005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior.
    Yamamoto T; Matsuo R; Kiyomitsu Y; Kitamura R
    J Neurophysiol; 1988 Oct; 60(4):1303-21. PubMed ID: 3193159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of single neurons in the toad's caudal ventral striatum to moving visual stimuli and test of their efferent projection by extracellular antidromic stimulation/recording techniques.
    Buxbaum-Conradi H; Ewert JP
    Brain Behav Evol; 1999 Dec; 54(6):338-54. PubMed ID: 10681604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of motor- and nonmotor-related neurons within the matrix-striosome organization of rat striatum.
    Trytek ES; White IM; Schroeder DM; Heidenreich BA; Rebec GV
    Brain Res; 1996 Jan; 707(2):221-7. PubMed ID: 8919299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose- and rate-dependent effects of cocaine on striatal firing related to licking.
    Tang C; Mittler T; Duke DC; Zhu Y; Pawlak AP; West MO
    J Pharmacol Exp Ther; 2008 Feb; 324(2):701-13. PubMed ID: 17991811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties.
    Alexander GE; DeLong MR
    J Neurophysiol; 1985 Jun; 53(6):1417-30. PubMed ID: 4009227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose amphetamine elevates movement-related firing of rat striatal neurons.
    West MO; Peoples LL; Michael AJ; Chapin JK; Woodward DJ
    Brain Res; 1997 Jan; 745(1-2):331-5. PubMed ID: 9037428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.
    Kulik JM; Pawlak AP; Kalkat M; Coffey KR; West MO
    Brain Res; 2017 Feb; 1657():101-108. PubMed ID: 27914882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiology of ventromedial striatal neurons during movement.
    Patino P; Garcia-Munoz M; Freed CR
    Brain Res Bull; 1995; 37(5):481-6. PubMed ID: 7633896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoglossal neural activity during licking and swallowing in the awake rat.
    Travers JB; Jackson LM
    J Neurophysiol; 1992 May; 67(5):1171-84. PubMed ID: 1597706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex.
    Cowan RL; Wilson CJ
    J Neurophysiol; 1994 Jan; 71(1):17-32. PubMed ID: 8158226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of cortical processing for facial movements during licking in cats.
    Hiraba H; Sato T; Saito K; Iwakami T; Mizoguchi N; Fukano M; Ueda K
    Somatosens Mot Res; 2007 Sep; 24(3):115-26. PubMed ID: 17853054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task.
    Schmitzer-Torbert N; Redish AD
    J Neurophysiol; 2004 May; 91(5):2259-72. PubMed ID: 14736863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain.
    Wang S; Redgrave P
    Neuroscience; 1997 Dec; 81(4):967-88. PubMed ID: 9330360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats.
    Hooper KC; Banks DA; Stordahl LJ; White IM; Rebec GV
    Neurosci Lett; 1997 Nov; 237(2-3):69-72. PubMed ID: 9453217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.