These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8013585)
21. Fluctuations in somatosensory responsiveness and baseline firing rates of neurons in the lateral striatum of freely moving rats: effects of intranigral apomorphine. Prokopenko VF; Pawlak AP; West MO Neuroscience; 2004; 125(4):1077-82. PubMed ID: 15120867 [TBL] [Abstract][Full Text] [Related]
22. Neural responses in multiple basal ganglia regions during spontaneous and treadmill locomotion tasks in rats. Shi LH; Luo F; Woodward DJ; Chang JY Exp Brain Res; 2004 Aug; 157(3):303-14. PubMed ID: 15067433 [TBL] [Abstract][Full Text] [Related]
23. Coding of serial order by neostriatal neurons: a "natural action" approach to movement sequence. Aldridge JW; Berridge KC J Neurosci; 1998 Apr; 18(7):2777-87. PubMed ID: 9502834 [TBL] [Abstract][Full Text] [Related]
24. Excitatory amino acid receptors mediate the orofacial stereotypy elicited by dopaminergic stimulation of the ventrolateral striatum. Kelley AE; Delfs JM Neuroscience; 1994 May; 60(1):85-95. PubMed ID: 7914360 [TBL] [Abstract][Full Text] [Related]
25. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. Kubota Y; Kawaguchi Y J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845 [TBL] [Abstract][Full Text] [Related]
26. Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and D-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Kish LJ; Palmer MR; Gerhardt GA Brain Res; 1999 Jun; 833(1):58-70. PubMed ID: 10375677 [TBL] [Abstract][Full Text] [Related]
27. Computer assisted three-dimensional reconstruction of brain regions from serial section digitized images. Application to the organization of striato-nigral relationships in the rat. Roesch S; Mailly P; Deniau JM; Maurin Y J Neurosci Methods; 1996 Nov; 69(2):197-204. PubMed ID: 8946323 [TBL] [Abstract][Full Text] [Related]
28. Medullary reticular formation activity during ingestion and rejection in the awake rat. Travers JB; DiNardo LA; Karimnamazi H Exp Brain Res; 2000 Jan; 130(1):78-92. PubMed ID: 10638444 [TBL] [Abstract][Full Text] [Related]
29. Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. Brown LL; Sharp FR Brain Res; 1995 Jul; 686(2):207-22. PubMed ID: 7583286 [TBL] [Abstract][Full Text] [Related]
30. Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum. Lowry JP; Fillenz M J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):497-501. PubMed ID: 9032696 [TBL] [Abstract][Full Text] [Related]
31. [Role of the cholinergic system in the dorsal and ventral striatum of the brain in regulation of a learned movement in rats]. Dubrovskaia NM; Zhuravin IA Ross Fiziol Zh Im I M Sechenova; 1997; 83(1-2):83-9. PubMed ID: 13676989 [TBL] [Abstract][Full Text] [Related]
32. Electrophysiological and behavioral output of the rat basal ganglia after intrastriatal infusion of d-amphetamine: lack of support for the basal ganglia model. Waszczak BL; Martin L; Boucher N; Zahr N; Sikes RW; Stellar JR Brain Res; 2001 Nov; 920(1-2):170-82. PubMed ID: 11716823 [TBL] [Abstract][Full Text] [Related]
33. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Féger J; Bevan M; Crossman AR Neuroscience; 1994 May; 60(1):125-32. PubMed ID: 8052406 [TBL] [Abstract][Full Text] [Related]
34. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Cromwell HC; Schultz W J Neurophysiol; 2003 May; 89(5):2823-38. PubMed ID: 12611937 [TBL] [Abstract][Full Text] [Related]
35. Single body parts are processed by individual neurons in the mouse dorsolateral striatum. Coffey KR; Nader M; West MO Brain Res; 2016 Apr; 1636():200-207. PubMed ID: 26827625 [TBL] [Abstract][Full Text] [Related]
36. Ascorbate modulation of sensorimotor processing in striatum of freely moving rats. Cortright JJ; Rebec GV Brain Res; 2006 May; 1092(1):108-16. PubMed ID: 16753136 [TBL] [Abstract][Full Text] [Related]
37. Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey. Kimura M; Kato M; Shimazaki H; Watanabe K; Matsumoto N J Neurophysiol; 1996 Dec; 76(6):3771-86. PubMed ID: 8985875 [TBL] [Abstract][Full Text] [Related]
38. Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. Hoover JE; Hoffer ZS; Alloway KD J Neurophysiol; 2003 Mar; 89(3):1576-87. PubMed ID: 12611938 [TBL] [Abstract][Full Text] [Related]
39. Dopamine depletion causes fragmented clustering of neurons in the sensorimotor striatum: evidence of lasting reorganization of corticostriatal input. Cho J; Duke D; Manzino L; Sonsalla PK; West MO J Comp Neurol; 2002 Oct; 452(1):24-37. PubMed ID: 12205707 [TBL] [Abstract][Full Text] [Related]
40. Behavior-related changes in the activity of substantia nigra pars reticulata neurons in freely moving rats. Gulley JM; Kuwajima M; Mayhill E; Rebec GV Brain Res; 1999 Oct; 845(1):68-76. PubMed ID: 10529445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]