BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8013657)

  • 1. Purification of two active fusion proteins of the Na(+)-dependent citrate carrier of Klebsiella pneumoniae.
    Pos KM; Bott M; Dimroth P
    FEBS Lett; 1994 Jun; 347(1):37-41. PubMed ID: 8013657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane topology of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae. Evidence for a new structural class of secondary transporters.
    van Geest M; Lolkema JS
    J Biol Chem; 1996 Oct; 271(41):25582-9. PubMed ID: 8810332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Na+-dependent citrate carrier of Klebsiella pneumoniae: high-level expression and site-directed mutagenesis of asparagine-185 and glutamate-194.
    Kästner CN; Dimroth P; Pos KM
    Arch Microbiol; 2000; 174(1-2):67-73. PubMed ID: 10985744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional properties of the purified Na(+)-dependent citrate carrier of Klebsiella pneumoniae: evidence for asymmetric orientation of the carrier protein in proteoliposomes.
    Pos KM; Dimroth P
    Biochemistry; 1996 Jan; 35(3):1018-26. PubMed ID: 8547237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology of the Na(+)/citrate transporter CitS of Klebsiella pneumoniae by insertion mutagenesis.
    van Geest M; Lolkema JS
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):328-38. PubMed ID: 10825453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization and reconstitution of the Na(+)-dependent citrate carrier of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    J Biol Chem; 1990 May; 265(14):7721-4. PubMed ID: 2186025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae.
    Bott M; Meyer M; Dimroth P
    Mol Microbiol; 1995 Nov; 18(3):533-46. PubMed ID: 8748036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A + T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae.
    Meyer M; Dimroth P; Bott M
    J Mol Biol; 1997 Jun; 269(5):719-31. PubMed ID: 9223636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions.
    Lolkema JS; Enequist H; van der Rest ME
    Eur J Biochem; 1994 Mar; 220(2):469-75. PubMed ID: 8125105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of the oxaloacetate decarboxylase Na+ pump and its individual subunits in Escherichia coli and analysis of their function.
    Di Berardino M; Dimroth P
    Eur J Biochem; 1995 Aug; 231(3):790-801. PubMed ID: 7649179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of the sodium transport enzyme oxaloacetate decarboxylase by affinity chromatography on avidin sepharose.
    Dimroth P
    FEBS Lett; 1982 May; 141(1):59-62. PubMed ID: 7044824
    [No Abstract]   [Full Text] [Related]  

  • 12. Cross-linking of trans reentrant loops in the Na(+)-citrate transporter CitS of Klebsiella pneumoniae.
    Dobrowolski A; Fusetti F; Lolkema JS
    Biochemistry; 2010 Jun; 49(21):4509-15. PubMed ID: 20420430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence and functional properties of a sodium-dependent citrate transport system from Klebsiella pneumoniae.
    van der Rest ME; Siewe RM; Abee T; Schwarz E; Oesterhelt D; Konings WN
    J Biol Chem; 1992 May; 267(13):8971-6. PubMed ID: 1577734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein.
    Meyer M; Dimroth P; Bott M
    J Bacteriol; 2001 Sep; 183(18):5248-56. PubMed ID: 11514506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid purification of a functionally active plant sucrose carrier from transgenic yeast using a bacterial biotin acceptor domain.
    Stolz J; Darnhofer-Demar B; Sauer N
    FEBS Lett; 1995 Dec; 377(2):167-71. PubMed ID: 8543043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of oxaloacetate decarboxylase of Salmonella typhimurium, a sodium ion pump.
    Wifling K; Dimroth P
    Arch Microbiol; 1989; 152(6):584-8. PubMed ID: 2556085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sodium ion translocating oxaloacetate decarboxylase of Klebsiella pneumoniae. Sequence of the integral membrane-bound subunits beta and gamma.
    Laussermair E; Schwarz E; Oesterhelt D; Reinke H; Beyreuther K; Dimroth P
    J Biol Chem; 1989 Sep; 264(25):14710-5. PubMed ID: 2549031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of the sodium-ion-translocating oxaloacetate decarboxylase of Klebsiella pneumoniae and reconstitution of the active complex from the isolated subunits.
    Dimroth P; Thomer A
    Eur J Biochem; 1988 Jul; 175(1):175-80. PubMed ID: 3042395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequence of a citrate carrier of Klebsiella pneumoniae.
    van der Rest ME; Schwarz E; Oesterhelt D; Konings WN
    Eur J Biochem; 1990 Apr; 189(2):401-7. PubMed ID: 2186908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial energy transductions coupled to sodium ions.
    Dimroth P
    Res Microbiol; 1990; 141(3):332-6. PubMed ID: 2177912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.