BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8013893)

  • 1. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes.
    Vincent-Viry M; Pontes ZB; Gueguen R; Galteau MM; Siest G
    Genet Epidemiol; 1994; 11(2):115-29. PubMed ID: 8013893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylator phenotyping: the urinary caffeine metabolite ratio in slow acetylators correlates with a marker of systemic NAT1 activity.
    Cribb AE; Isbrucker R; Levatte T; Tsui B; Gillespie CT; Renton KW
    Pharmacogenetics; 1994 Jun; 4(3):166-70. PubMed ID: 7920698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of within-subject variation of caffeine metabolism when used to determine cytochrome P4501A2 and N-acetyltransferase-2 activities.
    McQuilkin SH; Nierenberg DW; Bresnick E
    Cancer Epidemiol Biomarkers Prev; 1995 Mar; 4(2):139-46. PubMed ID: 7742721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities.
    Relling MV; Lin JS; Ayers GD; Evans WE
    Clin Pharmacol Ther; 1992 Dec; 52(6):643-58. PubMed ID: 1458773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human N-acetylation genotype determination with urinary caffeine metabolites.
    Kilbane AJ; Silbart LK; Manis M; Beitins IZ; Weber WW
    Clin Pharmacol Ther; 1990 Apr; 47(4):470-7. PubMed ID: 2328555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping.
    Tang BK; Kadar D; Qian L; Iriah J; Yip J; Kalow W
    Clin Pharmacol Ther; 1991 Jun; 49(6):648-57. PubMed ID: 2060254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation polymorphism of caffeine in a Japanese population.
    Hashiguchi M; Ebihara A
    Clin Pharmacol Ther; 1992 Sep; 52(3):274-6. PubMed ID: 1526084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine as a potential indicator for acetylator status.
    Rankin RB; Hudson SA; Fell AF
    J Clin Pharm Ther; 1987 Feb; 12(1):47-51. PubMed ID: 3449563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Evaluation of a caffeine test for determining the phenotype of N-acetyltransferase].
    Gascon MP; Leemann T; Dayer P
    Schweiz Med Wochenschr; 1987 Dec; 117(49):1974-6. PubMed ID: 3423781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caffeine acetylator phenotyping during maturation in infants.
    Pariente-Khayat A; Pons G; Rey E; Richard MO; D'Athis P; Moran C; Badoual J; Olive G
    Pediatr Res; 1991 May; 29(5):492-5. PubMed ID: 1896253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of theophylline metabolism in man.
    Miller CA; Slusher LB; Vesell ES
    J Clin Invest; 1985 May; 75(5):1415-25. PubMed ID: 4039734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine as a probe for CYP1A2 activity: potential influence of renal factors on urinary phenotypic trait measurements.
    Tang BK; Zhou Y; Kadar D; Kalow W
    Pharmacogenetics; 1994 Jun; 4(3):117-24. PubMed ID: 7920691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites.
    Butler MA; Lang NP; Young JF; Caporaso NE; Vineis P; Hayes RB; Teitel CH; Massengill JP; Lawsen MF; Kadlubar FF
    Pharmacogenetics; 1992 Jun; 2(3):116-27. PubMed ID: 1306111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of carcinogenic arylamine N-oxidation phenotype in humans by analysis of caffeine urinary metabolites.
    Kadlubar FF; Talaska G; Butler MA; Teitel CH; Massengill JP; Lang NP
    Prog Clin Biol Res; 1990; 340B():107-14. PubMed ID: 2392442
    [No Abstract]   [Full Text] [Related]  

  • 15. Polymorphic N-acetylation of a caffeine metabolite.
    Grant DM; Tang BK; Kalow W
    Clin Pharmacol Ther; 1983 Mar; 33(3):355-9. PubMed ID: 6825389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver.
    Grant DM; Mörike K; Eichelbaum M; Meyer UA
    J Clin Invest; 1990 Mar; 85(3):968-72. PubMed ID: 2312737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene.
    Nakajima M; Yokoi T; Mizutani M; Shin S; Kadlubar FF; Kamataki T
    Cancer Epidemiol Biomarkers Prev; 1994; 3(5):413-21. PubMed ID: 7920209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of AFMU excretion in infants.
    Pons G; Rey E; Carrier O; Richard MO; Moran C; Badoual J; Olive G
    Fundam Clin Pharmacol; 1989; 3(6):589-95. PubMed ID: 2613160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylator phenotypes of Saudi Arabians by a simplified caffeine metabolites test.
    el-Yazigi A; Chaleby K; Martin CR
    J Clin Pharmacol; 1989 Mar; 29(3):246-50. PubMed ID: 2723111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers.
    Muscat JE; Pittman B; Kleinman W; Lazarus P; Stellman SD; Richie JP
    Biochem Pharmacol; 2008 Oct; 76(7):929-37. PubMed ID: 18703023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.