BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8014468)

  • 1. Intra-acinar profiles of cytosolic and mitochondrial malate dehydrogenase isoenzymes in rat liver.
    Maly IP; Toranelli M; Sasse D
    J Histochem Cytochem; 1994 Jul; 42(7):855-9. PubMed ID: 8014468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms.
    Dasika SK; Vinnakota KC; Beard DA
    Biophys J; 2015 Jan; 108(2):420-30. PubMed ID: 25606689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of endosulfan on cytoplasmic and mitochondrial liver malate dehydrogenase from the freshwater catfish (Clarias batrachus).
    Mishra R; Shukla SP
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 May; 117(1):7-18. PubMed ID: 9185323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of malate dehydrogenases from neonatal, adolescent, and mature rat brain.
    Malik P; McKenna MC; Tildon JT
    Neurochem Res; 1993 Mar; 18(3):247-57. PubMed ID: 8479597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular weight of cytoplasmic malate dehydrogenase, mitochondrial malate dehydrogenase and lactate dehydrogenase of a freshwater catfish.
    Tripathi G
    Biomed Environ Sci; 1994 Jun; 7(2):122-9. PubMed ID: 7946007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective permeability of rat liver mitochondria to purified malate dehydrogenase isoenzymes in vitro.
    Passarella S; Marra E; Doonan S; Quagliariello E
    Biochem J; 1980 Nov; 192(2):649-58. PubMed ID: 7236231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary restriction and triiodothyronine (T3) regulation of malate-aspartate shuttle enzymes in the liver and kidney of mice.
    Goyary D; Sharma R
    Indian J Biochem Biophys; 2005 Dec; 42(6):345-9. PubMed ID: 16955734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective uptake of malate dehydrogenase isoenzymes into mitochondria in vitro [proceedings].
    Doonan S; Marra E; Passarella S
    Biochem Soc Trans; 1979 Jun; 7(3):514-6. PubMed ID: 446844
    [No Abstract]   [Full Text] [Related]  

  • 9. L-2-hydroxyglutaric aciduria, a defect of metabolite repair.
    Rzem R; Vincent MF; Van Schaftingen E; Veiga-da-Cunha M
    J Inherit Metab Dis; 2007 Oct; 30(5):681-9. PubMed ID: 17603759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic relationships and biochemical properties of the duplicated cytosolic and mitochondrial isoforms of malate dehydrogenase from a teleost fish, Sphyraena idiastes.
    Lin JJ; Yang TH; Wahlstrand BD; Fields PA; Somero GN
    J Mol Evol; 2002 Jan; 54(1):107-17. PubMed ID: 11734904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate dehydrogenase species in the cytosolic fraction of chicken liver.
    Domènech C; Mazo A; Artigas R; Cortés A; Bozal J
    Biol Chem Hoppe Seyler; 1986 Oct; 367(10):1069-76. PubMed ID: 3790255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular mechanisms of the expression of cytosolic and mitochondrial isozyme genes].
    Setoyama C
    Nihon Rinsho; 1995 May; 53(5):1081-6. PubMed ID: 7602759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of malate dehydrogenase from chicken liver mitochondria. Existence of a small quantity of cytosolic isoenzyme.
    Gelpí JL; Domènech C; Mazo A; Cortés A; Bozal J
    Int J Biochem; 1988; 20(9):989-96. PubMed ID: 3197911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microquantitative determination of intra-acinar distribution profiles of low-Km and high-Km aldehyde dehydrogenase activity in rat liver.
    Maly IP; Sasse D
    Eur J Biochem; 1987 Dec; 170(1-2):173-8. PubMed ID: 3691517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-specific development of malate-aspartate shuttle in the liver and kidney of mice.
    Sharma R; Dey S; Verma R
    Biochem Int; 1992 Sep; 27(6):1059-66. PubMed ID: 1445374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro.
    Marra E; Passarella S; Casamassima E; Perlino E; Doonan S; Quagliariello E
    Biochem J; 1985 Jun; 228(2):493-503. PubMed ID: 4015628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capacity of the malate-aspartate shuttle differs between periportal and perivenous hepatocytes from rats.
    Shiota M; Hiramatsu M; Fujimoto Y; Moriyama M; Kimura K; Ohta M; Sugano T
    Arch Biochem Biophys; 1994 Feb; 308(2):349-56. PubMed ID: 8109964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity.
    Schantz PG; Henriksson J
    Acta Physiol Scand; 1987 Apr; 129(4):505-15. PubMed ID: 3591372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased malate dehydrogenase activity in blood from non-drinking alcoholics.
    Willis JA; Stowell KM; Crow KE; Batt RD; Hardman MJ
    Alcohol Alcohol; 1985; 20(3):293-8. PubMed ID: 4052167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrocortisone and triiodothyronine regulation of malate-aspartate shuttle enzymes during postnatal development of chicken.
    Lyngdoh HG; Sharma R
    Indian J Biochem Biophys; 2001 Jun; 38(3):170-5. PubMed ID: 11693380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.