These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 8014575)
1. Macrophage-mediated oxidation of extracellular low density lipoprotein requires an initial binding of the lipoprotein to its receptor. Aviram M; Rosenblat M J Lipid Res; 1994 Mar; 35(3):385-98. PubMed ID: 8014575 [TBL] [Abstract][Full Text] [Related]
2. Involvement of the macrophage low density lipoprotein receptor-binding domains in the uptake of oxidized low density lipoprotein. Keidar S; Brook GJ; Rosenblat M; Fuhrman B; Dankner G; Aviram M Arterioscler Thromb; 1992 Apr; 12(4):484-93. PubMed ID: 1373074 [TBL] [Abstract][Full Text] [Related]
3. Macrophage oxidative modification of low density lipoprotein occurs independently of its binding to the low density lipoprotein receptor. Tangirala RK; Mol MJ; Steinberg D J Lipid Res; 1996 Apr; 37(4):835-43. PubMed ID: 8732783 [TBL] [Abstract][Full Text] [Related]
4. Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. Aviram M J Biol Chem; 1992 Jan; 267(1):218-25. PubMed ID: 1730591 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Keidar S; Kaplan M; Hoffman A; Aviram M Atherosclerosis; 1995 Jun; 115(2):201-15. PubMed ID: 7661879 [TBL] [Abstract][Full Text] [Related]
6. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Fuhrman B; Judith O; Keidar S; Ben-Yaish L; Kaplan M; Aviram M Free Radic Biol Med; 1997; 23(1):34-46. PubMed ID: 9165295 [TBL] [Abstract][Full Text] [Related]
7. Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Fuhrman B; Oiknine J; Aviram M Atherosclerosis; 1994 Nov; 111(1):65-78. PubMed ID: 7840815 [TBL] [Abstract][Full Text] [Related]
8. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher UP; Lougheed M; Kwan WC; Dirks M J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257 [TBL] [Abstract][Full Text] [Related]
9. Glomerular macrophages in nephrotoxic serum nephritis are activated to oxidize low-density lipoprotein. Rie J; Silbiger S; Neugarten J Am J Kidney Dis; 1995 Aug; 26(2):362-7. PubMed ID: 7645542 [TBL] [Abstract][Full Text] [Related]
10. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. Xu W; Takahashi Y; Sakashita T; Iwasaki T; Hattori H; Yoshimoto T J Biol Chem; 2001 Sep; 276(39):36454-9. PubMed ID: 11479307 [TBL] [Abstract][Full Text] [Related]
11. Lipoprotein receptor interactions are not required for monocyte oxidation of LDL. Cathcart MK; Li Q; Chisolm GM J Lipid Res; 1995 Sep; 36(9):1857-65. PubMed ID: 8558074 [TBL] [Abstract][Full Text] [Related]
12. Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL: in vitro and in vivo studies. Rosenblat M; Aviram M Free Radic Biol Med; 1998 Jan; 24(2):305-17. PubMed ID: 9433906 [TBL] [Abstract][Full Text] [Related]
13. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. Sparrow CP; Parthasarathy S; Steinberg D J Biol Chem; 1989 Feb; 264(5):2599-604. PubMed ID: 2914924 [TBL] [Abstract][Full Text] [Related]
14. Endogenously produced lipoprotein lipase enhances the binding and cell association of native, mildly oxidized and moderately oxidized low-density lipoprotein in mouse peritoneal macrophages. Wang X; Greilberger J; Levak-Frank S; Zimmermann R; Zechner R; Jürgens G Biochem J; 1999 Oct; 343 Pt 2(Pt 2):347-53. PubMed ID: 10510299 [TBL] [Abstract][Full Text] [Related]
15. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein. Aviram M; Rosenblat M; Etzioni A; Levy R Metabolism; 1996 Sep; 45(9):1069-79. PubMed ID: 8781293 [TBL] [Abstract][Full Text] [Related]
17. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. Han J; Hajjar DP; Febbraio M; Nicholson AC J Biol Chem; 1997 Aug; 272(34):21654-9. PubMed ID: 9261189 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of the macrophage-induced oxidation of low density lipoprotein by interferon-gamma. Fong LG; Albert TS; Hom SE J Lipid Res; 1994 May; 35(5):893-904. PubMed ID: 8071611 [TBL] [Abstract][Full Text] [Related]
19. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein. Schalkwijk CG; Vermeer MA; Stehouwer CD; te Koppele J; Princen HM; van Hinsbergh VW Biochim Biophys Acta; 1998 Nov; 1394(2-3):187-98. PubMed ID: 9795211 [TBL] [Abstract][Full Text] [Related]
20. Phospholipase D-modified low density lipoprotein is taken up by macrophages at increased rate. A possible role for phosphatidic acid. Aviram M; Maor I J Clin Invest; 1993 May; 91(5):1942-52. PubMed ID: 8486764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]