These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8015443)

  • 1. Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates.
    Saitou N; Ueda S
    Mol Biol Evol; 1994 May; 11(3):504-12. PubMed ID: 8015443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of higher-primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake's methods of evolutionary parsimony and operator metrics.
    Holmquist R; Miyamoto MM; Goodman M
    Mol Biol Evol; 1988 May; 5(3):217-36. PubMed ID: 3386527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More single-nucleotide mutations surround small insertions than small deletions in primates.
    Huang S; Yu T; Chen Z; Yuan S; Chen S; Xu A
    Hum Mutat; 2012 Jul; 33(7):1099-106. PubMed ID: 22461281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny.
    Hazkani-Covo E
    Mol Biol Evol; 2009 Oct; 26(10):2175-9. PubMed ID: 19578158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evolution of the mitochondrial cytochrome b gene and nuclear beta-fibrinogen intron 7 in woodpeckers.
    Prychitko TM; Moore WS
    Mol Biol Evol; 2000 Jul; 17(7):1101-11. PubMed ID: 10889223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics.
    Matthee CA; Eick G; Willows-Munro S; Montgelard C; Pardini AT; Robinson TJ
    Mol Phylogenet Evol; 2007 Mar; 42(3):827-37. PubMed ID: 17101283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the rate of insertion and deletion mutation male biased?: Molecular evolutionary analysis of avian and primate sex chromosome sequences.
    Sundström H; Webster MT; Ellegren H
    Genetics; 2003 May; 164(1):259-68. PubMed ID: 12750337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular phylogeny and evolution of primate mitochondrial DNA.
    Hayasaka K; Gojobori T; Horai S
    Mol Biol Evol; 1988 Nov; 5(6):626-44. PubMed ID: 3146681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis.
    Li WH; Ellsworth DL; Krushkal J; Chang BH; Hewett-Emmett D
    Mol Phylogenet Evol; 1996 Feb; 5(1):182-7. PubMed ID: 8673286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns.
    Blanchard JL; Schmidt GW
    Mol Biol Evol; 1996 Mar; 13(3):537-48. PubMed ID: 8742642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forty million years of independent evolution: a mitochondrial gene and its corresponding nuclear pseudogene in primates.
    Schmitz J; Piskurek O; Zischler H
    J Mol Evol; 2005 Jul; 61(1):1-11. PubMed ID: 16007490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion/deletion and nucleotide polymorphism data reveal constraints in Drosophila melanogaster introns and intergenic regions.
    Ometto L; Stephan W; De Lorenzo D
    Genetics; 2005 Mar; 169(3):1521-7. PubMed ID: 15654088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA.
    Schmitz J; Ohme M; Zischler H
    Mol Biol Evol; 2002 Apr; 19(4):544-53. PubMed ID: 11919296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of a noncoding region of the chloroplast genome.
    Golenberg EM; Clegg MT; Durbin ML; Doebley J; Ma DP
    Mol Phylogenet Evol; 1993 Mar; 2(1):52-64. PubMed ID: 8081547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence context affects the rate of short insertions and deletions in flies and primates.
    Tanay A; Siggia ED
    Genome Biol; 2008; 9(2):R37. PubMed ID: 18291026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Accelerated Rates of Insertions and Deletions Independent of Rates of Nucleotide Substitution.
    Navarro Leija O; Varghese S; Han MV
    J Mol Evol; 2016 Oct; 83(3-4):137-146. PubMed ID: 27770175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.
    Hazkani-Covo E; Covo S
    PLoS Genet; 2008 Oct; 4(10):e1000237. PubMed ID: 18949041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of chloroplast DNA sequences.
    Curtis SE; Clegg MT
    Mol Biol Evol; 1984 Jul; 1(4):291-301. PubMed ID: 6152869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the pattern of nucleotide substitution.
    Yang Z
    J Mol Evol; 1994 Jul; 39(1):105-11. PubMed ID: 8064867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.