BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 8015849)

  • 1. Prognosis of cervical spinal cord injury in correlation with magnetic resonance imaging.
    Sato T; Kokubun S; Rijal KP; Ojima T; Moriai N; Hashimoto M; Hyodo H; Oonuma H
    Paraplegia; 1994 Feb; 32(2):81-5. PubMed ID: 8015849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of sequential MR imaging of the injured spinal cord with prognosis.
    Takahashi M; Izunaga H; Sato R; Shinzato J; Korogi Y; Yamashita Y; Sakae T
    Radiat Med; 1993; 11(4):127-38. PubMed ID: 8234856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of prognostic value of different MRI classifications of signal intensity change in cervical spondylotic myelopathy.
    Avadhani A; Rajasekaran S; Shetty AP
    Spine J; 2010 Jun; 10(6):475-85. PubMed ID: 20494809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [MRI findings of cervical cord injury. A case report of long-term follow-up].
    Iida T; Nakamura T; Iizuka H; Kadoya S; Satoh S; Itoh S
    No Shinkei Geka; 1988 Dec; 16(13):1501-4. PubMed ID: 3226500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute spinal cord injury. A study using physical examination and magnetic resonance imaging.
    Bondurant FJ; Cotler HB; Kulkarni MV; McArdle CB; Harris JH
    Spine (Phila Pa 1976); 1990 Mar; 15(3):161-8. PubMed ID: 2353251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multishot diffusion-weighted imaging features in spinal cord infarction.
    Zhang J; Huan Y; Qian Y; Sun L; Ge Y
    J Spinal Disord Tech; 2005 Jun; 18(3):277-82. PubMed ID: 15905774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging in acute cervical spinal cord injury: a correlative study on spinal cord changes and 1 month motor recovery.
    Mahmood NS; Kadavigere R; Avinash KR; Rao VR
    Spinal Cord; 2008 Dec; 46(12):791-7. PubMed ID: 18542094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the evolution of intramedullary lesions in cervical spinal cord injury. Qualitative and quantitative analysis with sequential MR imaging.
    Taneichi H; Abumi K; Kaneda K; Terae S
    Paraplegia; 1994 Jan; 32(1):9-18. PubMed ID: 8015840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Factors to affect severity of hyperextension injury of cervical spinal cord].
    Liu P; Liao W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1338-42. PubMed ID: 19968176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical and MRI predictors of outcome after surgical intervention for cervical spondylotic myelopathy.
    Alafifi T; Kern R; Fehlings M
    J Neuroimaging; 2007 Oct; 17(4):315-22. PubMed ID: 17894620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality.
    Shen H; Tang Y; Huang L; Yang R; Wu Y; Wang P; Shi Y; He X; Liu H; Ye J
    Int Orthop; 2007 Jun; 31(3):375-83. PubMed ID: 16835743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy.
    Zhang YZ; Shen Y; Wang LF; Ding WY; Xu JX; He J
    Spine (Phila Pa 1976); 2010 May; 35(10):E396-9. PubMed ID: 20393392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis following eating freshwater snails.
    Jin EH; Ma Q; Ma DQ; He W; Ji AP; Yin CH
    Chin Med J (Engl); 2008 Jan; 121(1):67-72. PubMed ID: 18208669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The correlation of diffusion-weighted magnetic resonance imaging in cervical compression myelopathy with neurologic and radiologic severity.
    Aota Y; Niwa T; Uesugi M; Yamashita T; Inoue T; Saito T
    Spine (Phila Pa 1976); 2008 Apr; 33(7):814-20. PubMed ID: 18379411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic injuries of the spinal cord: assessment with MR imaging.
    Yamashita Y; Takahashi M; Matsuno Y; Sakamoto Y; Oguni T; Sakae T; Yoshizumi K; Kim EE
    Radiology; 1990 Jun; 175(3):849-54. PubMed ID: 2343135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord decompression sickness associated with scuba diving: correlation of immediate and delayed magnetic resonance imaging findings with severity of neurologic impairment--a report on 3 cases.
    Yoshiyama M; Asamoto S; Kobayashi N; Sugiyama H; Doi H; Sakagawa H; Ida M
    Surg Neurol; 2007 Mar; 67(3):283-7. PubMed ID: 17320639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative and reproducible method to assess cord compression and canal stenosis after cervical spine trauma: a study of interrater and intrarater reliability.
    Furlan JC; Fehlings MG; Massicotte EM; Aarabi B; Vaccaro AR; Bono CM; Madrazo I; Villanueva C; Grauer JN; Mikulis D
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2083-91. PubMed ID: 17762809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relation of MR T2 image signal intensity ratio of cervical spondylotic myelopathy with clinical manifestations and prognosis].
    Shen Y; Zhang YZ; Wang LF
    Zhonghua Yi Xue Za Zhi; 2008 Nov; 88(43):3072-6. PubMed ID: 19192409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential MRI studies in patients with cervical cord injury but without bony injury.
    Shimada K; Tokioka T
    Paraplegia; 1995 Oct; 33(10):573-8. PubMed ID: 8848311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese-enhanced magnetic resonance imaging in experimental spinal cord injury: correlation between T1-weighted changes and Mn(2+) concentrations.
    Martirosyan NL; Bennett KM; Theodore N; Preul MC
    Neurosurgery; 2010 Jan; 66(1):131-6. PubMed ID: 20023543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.