BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 8016855)

  • 1. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases.
    Honkanen RE; Codispoti BA; Tse K; Boynton AL; Honkanan RE
    Toxicon; 1994 Mar; 32(3):339-50. PubMed ID: 8016855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.
    Takai A; Sasaki K; Nagai H; Mieskes G; Isobe M; Isono K; Yasumoto T
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):657-65. PubMed ID: 7702557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of protein phosphatases-1 and -2A with acanthifolicin. Comparison with diarrhetic shellfish toxins and identification of a region on okadaic acid important for phosphatase inhibition.
    Holmes CF; Luu HA; Carrier F; Schmitz FJ
    FEBS Lett; 1990 Sep; 270(1-2):216-8. PubMed ID: 2171991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin.
    Favre B; Turowski P; Hemmings BA
    J Biol Chem; 1997 May; 272(21):13856-63. PubMed ID: 9153244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the beta12-beta13 loop in protein phosphatase-1 catalytic subunit for inhibition by toxins and mammalian protein inhibitors.
    Connor JH; Kleeman T; Barik S; Honkanen RE; Shenolikar S
    J Biol Chem; 1999 Aug; 274(32):22366-72. PubMed ID: 10428807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro neutralization of the inhibitory effect of Microcystin-LR to protein phosphatase 2A by antibody against the toxin.
    Lin JR; Chu FS
    Toxicon; 1994 May; 32(5):605-13. PubMed ID: 8079372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts.
    Ariza RR; Keyse SM; Moggs JG; Wood RD
    Nucleic Acids Res; 1996 Feb; 24(3):433-40. PubMed ID: 8602355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants.
    MacKintosh C; Beattie KA; Klumpp S; Cohen P; Codd GA
    FEBS Lett; 1990 May; 264(2):187-92. PubMed ID: 2162782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response.
    Gehringer MM
    FEBS Lett; 2004 Jan; 557(1-3):1-8. PubMed ID: 14741332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phosphoprotein phosphatases in the corpus luteum: I identification and characterisation of serine/threonine phosphoprotein phosphatases in isolated rat luteal cells.
    Ford SL; Abayasekara DR; Persaud SJ; Jones PM
    J Endocrinol; 1996 Aug; 150(2):205-11. PubMed ID: 8869587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A.
    Bagu JR; Sykes BD; Craig MM; Holmes CF
    J Biol Chem; 1997 Feb; 272(8):5087-97. PubMed ID: 9030574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases.
    Honkanen RE; Zwiller J; Moore RE; Daily SL; Khatra BS; Dukelow M; Boynton AL
    J Biol Chem; 1990 Nov; 265(32):19401-4. PubMed ID: 2174036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases.
    Yan Y; Mumby MC
    J Biol Chem; 1999 Nov; 274(45):31917-24. PubMed ID: 10542219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of serine/threonine protein phosphatases enhances agonist-stimulated cAMP accumulation in UMR 106 osteoblast-like cells.
    Kovacs CS; Chik CL; Li B; Karpinski E; Ho AK
    Mol Cell Endocrinol; 1995 Apr; 110(1-2):9-16. PubMed ID: 7545625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structurally different members of the okadaic acid class selectively inhibit protein serine/threonine but not tyrosine phosphatase activity.
    Suganuma M; Fujiki H; Okabe S; Nishiwaki S; Brautigan D; Ingebritsen TS; Rosner MR
    Toxicon; 1992 Aug; 30(8):873-8. PubMed ID: 1326138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of immunoglobulin E-mediated secretion by protein phosphatases in human basophils and mast cells of skin and lung.
    Bastan R; Peirce MJ; Peachell PT
    Eur J Pharmacol; 2001 Oct; 430(1):135-41. PubMed ID: 11698073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A.
    MacKintosh C; Klumpp S
    FEBS Lett; 1990 Dec; 277(1-2):137-40. PubMed ID: 2176611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary characterization of the role of protein serine/threonine phosphatases in the regulation of human lung mast cell function.
    Peirce MJ; Cox SE; Munday MR; Peachell PT
    Br J Pharmacol; 1997 Jan; 120(2):239-46. PubMed ID: 9117116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of protein phosphatases in cyclic AMP-mediated stimulation of hepatic Na+/taurocholate cotransport.
    Mukhopadhyay S; Webster CR; Anwer MS
    J Biol Chem; 1998 Nov; 273(45):30039-45. PubMed ID: 9792726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrasensitive competitive binding assay for the detection of toxins affecting protein phosphatases.
    Serres MH; Fladmark KE; Døskeland SO
    Toxicon; 2000 Mar; 38(3):347-60. PubMed ID: 10669024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.