BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 8017891)

  • 1. The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion.
    Raine CS
    Ann Neurol; 1994; 36 Suppl():S61-72. PubMed ID: 8017891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sclerosis: immune system molecule expression in the central nervous system.
    Raine CS
    J Neuropathol Exp Neurol; 1994 Jul; 53(4):328-37. PubMed ID: 8021705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS.
    Reynolds R; Dawson M; Papadopoulos D; Polito A; Di Bello IC; Pham-Dinh D; Levine J
    J Neurocytol; 2002; 31(6-7):523-36. PubMed ID: 14501221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of oligodendrocytes in chronic relapsing experimental autoimmune encephalomyelitis.
    Moore GR; Traugott U; Raine CS
    J Neurol Sci; 1984 Aug; 65(2):137-45. PubMed ID: 6481396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination.
    Zhang Y; Li X; Ciric B; Curtis MT; Chen WJ; Rostami A; Zhang GX
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):9082-9093. PubMed ID: 32253301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis and their application for new therapeutic strategies.
    Martin R
    J Neural Transm Suppl; 1997; 49():53-67. PubMed ID: 9266414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF/FGFR Pathways in Multiple Sclerosis and in Its Disease Models.
    Rajendran R; Böttiger G; Stadelmann C; Karnati S; Berghoff M
    Cells; 2021 Apr; 10(4):. PubMed ID: 33924474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination.
    Merkler D; Ernsting T; Kerschensteiner M; Brück W; Stadelmann C
    Brain; 2006 Aug; 129(Pt 8):1972-83. PubMed ID: 16714315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion.
    Raine CS
    J Neuroimmunol; 1997 Aug; 77(2):135-52. PubMed ID: 9258244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
    Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A
    Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oligodendroglial cell: biology and immunology and relationship to multiple sclerosis.
    Bartlett PF; Mackay IR
    J Clin Lab Immunol; 1983 May; 11(1):1-7. PubMed ID: 6348293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate.
    Genain CP; Nguyen MH; Letvin NL; Pearl R; Davis RL; Adelman M; Lees MB; Linington C; Hauser SL
    J Clin Invest; 1995 Dec; 96(6):2966-74. PubMed ID: 8675668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice - a step towards understanding the complexity of multiple sclerosis.
    Kuerten S; Angelov DN
    Ann Anat; 2008; 190(1):1-15. PubMed ID: 18342137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models.
    Mars LT; Saikali P; Liblau RS; Arbour N
    Biochim Biophys Acta; 2011 Feb; 1812(2):151-61. PubMed ID: 20637863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis.
    Selmaj K; Brosnan CF; Raine CS
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6452-6. PubMed ID: 1830662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis.
    Lassmann H
    J Neurol; 1983; 229(4):207-20. PubMed ID: 6192222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis.
    Smith ME; Eller NL; McFarland HF; Racke MK; Raine CS
    Am J Pathol; 1999 Oct; 155(4):1147-61. PubMed ID: 10514398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis.
    Carboni S; Aboul-Enein F; Waltzinger C; Killeen N; Lassmann H; Peña-Rossi C
    J Neuroimmunol; 2003 Dec; 145(1-2):1-11. PubMed ID: 14644025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that Fas and FasL contribute to the pathogenesis of experimental autoimmune encephalomyelitis.
    Dittel BN
    Arch Immunol Ther Exp (Warsz); 2000; 48(5):381-8. PubMed ID: 11140465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deleterious versus protective autoimmunity in multiple sclerosis.
    Kostic M; Stojanovic I; Marjanovic G; Zivkovic N; Cvetanovic A
    Cell Immunol; 2015 Aug; 296(2):122-32. PubMed ID: 25944389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.