These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8017903)

  • 1. Denitrification: production and consumption of nitric oxide.
    Ye RW; Averill BA; Tiedje JM
    Appl Environ Microbiol; 1994 Apr; 60(4):1053-8. PubMed ID: 8017903
    [No Abstract]   [Full Text] [Related]  

  • 2. The requirement of RpoN (sigma factor sigma54) in denitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide.
    Härtig E; Zumft WG
    Appl Environ Microbiol; 1998 Aug; 64(8):3092-5. PubMed ID: 9687481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system.
    Härtig E; Zumft WG
    J Bacteriol; 1999 Jan; 181(1):161-6. PubMed ID: 9864326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri.
    Vollack KU; Zumft WG
    J Bacteriol; 2001 Apr; 183(8):2516-26. PubMed ID: 11274111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase.
    Henry Y; Bessières P
    Biochimie; 1984 Apr; 66(4):259-89. PubMed ID: 6331530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri.
    Jüngst A; Zumft WG
    FEBS Lett; 1992 Dec; 314(3):308-14. PubMed ID: 1468562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural gene (nirS) for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16.
    Rees E; Siddiqui RA; Köster F; Schneider B; Friedrich B
    Appl Environ Microbiol; 1997 Feb; 63(2):800-2. PubMed ID: 9023961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels.
    Rock JD; Mahnane MR; Anjum MF; Shaw JG; Read RC; Moir JW
    Mol Microbiol; 2005 Nov; 58(3):800-9. PubMed ID: 16238628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence for plasmid-borne nor-nir genes in Sinorhizobium meliloti JJ1c10.
    Chan YK; McCormick WA
    Can J Microbiol; 2004 Sep; 50(9):657-67. PubMed ID: 15644918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denitrification.
    Knowles R
    Microbiol Rev; 1982 Mar; 46(1):43-70. PubMed ID: 7045624
    [No Abstract]   [Full Text] [Related]  

  • 11. Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri.
    Arese M; Zumft WG; Cutruzzolà F
    Protein Expr Purif; 2003 Jan; 27(1):42-8. PubMed ID: 12509983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes.
    Baumann B; Snozzi M; Zehnder AJ; Van Der Meer JR
    J Bacteriol; 1996 Aug; 178(15):4367-74. PubMed ID: 8755862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa.
    Arai H; Kodama T; Igarashi Y
    FEMS Microbiol Lett; 1999 Jan; 170(1):19-24. PubMed ID: 9919648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification and its control.
    Ferguson SJ
    Antonie Van Leeuwenhoek; 1994; 66(1-3):89-110. PubMed ID: 7747942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO production by Pseudomonas aeruginosa cd1 nitrite reductase.
    Cutruzzolà F; Rinaldo S; Centola F; Brunori M
    IUBMB Life; 2003; 55(10-11):617-21. PubMed ID: 14711008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reappraisal of the nitric oxide-binding protein of denitrifying Pseudomonas.
    Zumft WG; Sherr BF; Payne WJ
    Biochem Biophys Res Commun; 1979 Jun; 88(4):1230-6. PubMed ID: 475782
    [No Abstract]   [Full Text] [Related]  

  • 17. Organization of the respiratory chain of Neisseria meningitidis.
    Deeudom M; Rock J; Moir J
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):139-42. PubMed ID: 16417504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
    Mahinthichaichan P; Gennis RB; Tajkhorshid E
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide in bacteria: synthesis and consumption.
    Watmough NJ; Butland G; Cheesman MR; Moir JW; Richardson DJ; Spiro S
    Biochim Biophys Acta; 1999 May; 1411(2-3):456-74. PubMed ID: 10320675
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.