These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8017905)

  • 21. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
    Ruchala J; Sibirny AA
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.
    Devendran S; Abdel-Hamid AM; Evans AF; Iakiviak M; Kwon IH; Mackie RI; Cann I
    Sci Rep; 2016 Oct; 6():35342. PubMed ID: 27748409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae.
    Subtil T; Boles E
    Biotechnol Biofuels; 2012 Mar; 5():14. PubMed ID: 22424089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose.
    Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M
    PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii.
    Nobre A; Lucas C; Leão C
    Appl Environ Microbiol; 1999 Aug; 65(8):3594-8. PubMed ID: 10427054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The type of carbohydrates specifically selects microbial community structures and fermentation patterns.
    Chatellard L; Trably E; Carrère H
    Bioresour Technol; 2016 Dec; 221():541-549. PubMed ID: 27686722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
    Lee BD; Apel WA; DeVeaux LC; Sheridan PP
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellobiose transport by mixed ruminal bacteria from a Cow.
    Kajikawa H; Masaki S
    Appl Environ Microbiol; 1999 Jun; 65(6):2565-9. PubMed ID: 10347044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
    Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes.
    Moon YH; Iakiviak M; Bauer S; Mackie RI; Cann IK
    Appl Environ Microbiol; 2011 Aug; 77(15):5157-69. PubMed ID: 21666020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism and quantitative contribution of the pentose pathway to the glucose metabolism of Morris hepatoma 5123C.
    Arora KK; Longenecker JP; Williams JF
    Int J Biochem; 1987; 19(2):133-46. PubMed ID: 3569642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus.
    Rodrussamee N; Lertwattanasakul N; Hirata K; Suprayogi ; Limtong S; Kosaka T; Yamada M
    Appl Microbiol Biotechnol; 2011 May; 90(4):1573-86. PubMed ID: 21476140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering applications to renewable resource utilization.
    Aristidou A; Penttilä M
    Curr Opin Biotechnol; 2000 Apr; 11(2):187-98. PubMed ID: 10753763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.