These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8017905)

  • 41. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors.
    Aristilde L
    Microb Biotechnol; 2017 Jan; 10(1):162-174. PubMed ID: 27878973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls.
    Miron J; Duncan SH; Stewart CS
    J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20.
    Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E
    FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering of Pentose Transport in
    Nijland JG; Driessen AJM
    Front Bioeng Biotechnol; 2019; 7():464. PubMed ID: 32064252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae.
    Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C
    Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer).
    Weimer PJ; Hatfield RD; Buxton DR
    Appl Environ Microbiol; 1993 Feb; 59(2):405-9. PubMed ID: 8434909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria.
    Akin DE; Borneman WS; Rigsby LL; Martin SA
    Appl Environ Microbiol; 1993 Feb; 59(2):644-7. PubMed ID: 8434931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii.
    Sugai JK; Delgenes JP
    Curr Microbiol; 1995 Oct; 31(4):239-44. PubMed ID: 7549770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1987 Oct; 53(10):2388-93. PubMed ID: 2827569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pentose metabolism in Mycobacterium smegmatis: specificity of induction of pentose isomerases.
    Izumori K; Yamanaka K; Elbein D
    J Bacteriol; 1976 Nov; 128(2):587-91. PubMed ID: 977547
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.
    Kawahara R; Saburi W; Odaka R; Taguchi H; Ito S; Mori H; Matsui H
    J Biol Chem; 2012 Dec; 287(50):42389-99. PubMed ID: 23093406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.
    Iakiviak M; Mackie RI; Cann IK
    Appl Environ Microbiol; 2011 Nov; 77(21):7541-50. PubMed ID: 21890664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.
    Deanda K; Zhang M; Eddy C; Picataggio S
    Appl Environ Microbiol; 1996 Dec; 62(12):4465-70. PubMed ID: 8953718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.
    Verbeke TJ; Giannone RJ; Klingeman DM; Engle NL; Rydzak T; Guss AM; Tschaplinski TJ; Brown SD; Hettich RL; Elkins JG
    Sci Rep; 2017 Feb; 7():43355. PubMed ID: 28230109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The inhibition of fungal cellulolysis by cell-free preparations from ruminococci.
    Stewart CS; Duncan SH; Richardson AJ; Backwell C; Begbie R
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):83-7. PubMed ID: 1427008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities.
    Kumar V; Binod P; Sindhu R; Gnansounou E; Ahluwalia V
    Bioresour Technol; 2018 Dec; 269():443-451. PubMed ID: 30217725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform.
    Donzella L; Varela JA; Sousa MJ; Morrissey JP
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33890624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.