These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 8017914)
1. Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Raaijmakers JM; Bitter W; Punte HL; Bakker PA; Weisbeek PJ; Schippers B Appl Environ Microbiol; 1994 Apr; 60(4):1184-90. PubMed ID: 8017914 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358. Marugg JD; de Weger LA; Nielander HB; Oorthuizen M; Recourt K; Lugtenberg B; van der Hofstad GA; Weisbeek PJ J Bacteriol; 1989 May; 171(5):2819-26. PubMed ID: 2540157 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Koster M; van de Vossenberg J; Leong J; Weisbeek PJ Mol Microbiol; 1993 May; 8(3):591-601. PubMed ID: 8392140 [TBL] [Abstract][Full Text] [Related]
4. Multiple outer membrane receptors for uptake of ferric pseudobactins in Pseudomonas putida WCS358. Koster M; Ovaa W; Bitter W; Weisbeek P Mol Gen Genet; 1995 Oct; 248(6):735-43. PubMed ID: 7476877 [TBL] [Abstract][Full Text] [Related]
5. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Bitter W; Marugg JD; de Weger LA; Tommassen J; Weisbeek PJ Mol Microbiol; 1991 Mar; 5(3):647-55. PubMed ID: 1646376 [TBL] [Abstract][Full Text] [Related]
6. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Loper JE; Henkels MD Appl Environ Microbiol; 1999 Dec; 65(12):5357-63. PubMed ID: 10583989 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Venturi V; Ottevanger C; Leong J; Weisbeek PJ Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519 [TBL] [Abstract][Full Text] [Related]
8. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Venturi V; Ottevanger C; Bracke M; Weisbeek P Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664 [TBL] [Abstract][Full Text] [Related]
9. A novel cell surface polysaccharide in Pseudomonas putida WCS358, which shares characteristics with Escherichia coli K antigens, is not involved in root colonization. de Weger LA; Bloemberg GV; van Wezel T; van Raamsdonk M; Glandorf DC; van Vuurde J; Jann K; Lugtenberg BJ J Bacteriol; 1996 Apr; 178(7):1955-61. PubMed ID: 8606170 [TBL] [Abstract][Full Text] [Related]
10. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Meziane H; VAN DER Sluis I; VAN Loon LC; Höfte M; Bakker PA Mol Plant Pathol; 2005 Mar; 6(2):177-85. PubMed ID: 20565648 [TBL] [Abstract][Full Text] [Related]
11. Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ferric-pseudobactin 358 receptor PupA. Bitter W; van Leeuwen IS; de Boer J; Zomer HW; Koster MC; Weisbeek PJ; Tommassen J Mol Gen Genet; 1994 Dec; 245(6):694-703. PubMed ID: 7830717 [TBL] [Abstract][Full Text] [Related]
12. Polymerase chain reaction for verification of fluorescent colonies of Erwinia chrysanthemi and Pseudomonas putida WCS358 in immunofluorescence colony staining. van der Wolf JM; van Beckhoven JR; de Vries PM; Raaijmakers JM; Bakker PA; Bertheau Y; van Vuurde JW J Appl Bacteriol; 1995 Nov; 79(5):569-77. PubMed ID: 8567494 [TBL] [Abstract][Full Text] [Related]
13. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity. Venturi V; Wolfs K; Leong J; Weisbeek PJ Mol Gen Genet; 1994 Oct; 245(1):126-32. PubMed ID: 7845355 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358: RpoS is not involved in siderophore and homoserine lactone production. Kojic M; Degrassi G; Venturi V Biochim Biophys Acta; 1999 Dec; 1489(2-3):413-20. PubMed ID: 10673044 [TBL] [Abstract][Full Text] [Related]
15. Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. de Weger LA; van Arendonk JJ; Recourt K; van der Hofstad GA; Weisbeek PJ; Lugtenberg B J Bacteriol; 1988 Oct; 170(10):4693-8. PubMed ID: 2971647 [TBL] [Abstract][Full Text] [Related]
16. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Lemanceau P; Bakker PA; De Kogel WJ; Alabouvette C; Schippers B Appl Environ Microbiol; 1992 Sep; 58(9):2978-82. PubMed ID: 1444411 [TBL] [Abstract][Full Text] [Related]
17. Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. de Groot A; Heijnen I; de Cock H; Filloux A; Tommassen J J Bacteriol; 1994 Feb; 176(3):642-50. PubMed ID: 7905475 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Bertani I; Venturi V Appl Environ Microbiol; 2004 Sep; 70(9):5493-502. PubMed ID: 15345437 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of the exbB, exbD and tonB genes of Pseudomonas putida WCS358: their involvement in ferric-pseudobactin transport. Bitter W; Tommassen J; Weisbeek PJ Mol Microbiol; 1993 Jan; 7(1):117-30. PubMed ID: 8437515 [TBL] [Abstract][Full Text] [Related]