These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 8018865)
1. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Svensson B Plant Mol Biol; 1994 May; 25(2):141-57. PubMed ID: 8018865 [TBL] [Abstract][Full Text] [Related]
2. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. Jespersen HM; MacGregor EA; Henrissat B; Sierks MR; Svensson B J Protein Chem; 1993 Dec; 12(6):791-805. PubMed ID: 8136030 [TBL] [Abstract][Full Text] [Related]
3. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. Janecek S; Svensson B; MacGregor EA Eur J Biochem; 2003 Feb; 270(4):635-45. PubMed ID: 12581203 [TBL] [Abstract][Full Text] [Related]
4. Properties and applications of starch-converting enzymes of the alpha-amylase family. van der Maarel MJ; van der Veen B; Uitdehaag JC; Leemhuis H; Dijkhuizen L J Biotechnol; 2002 Mar; 94(2):137-55. PubMed ID: 11796168 [TBL] [Abstract][Full Text] [Related]
5. Domain evolution in the alpha-amylase family. Janecek S; Svensson B; Henrissat B J Mol Evol; 1997 Sep; 45(3):322-31. PubMed ID: 9302327 [TBL] [Abstract][Full Text] [Related]
6. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. MacGregor EA; Janecek S; Svensson B Biochim Biophys Acta; 2001 Mar; 1546(1):1-20. PubMed ID: 11257505 [TBL] [Abstract][Full Text] [Related]
7. Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. Leemhuis H; Kragh KM; Dijkstra BW; Dijkhuizen L J Biotechnol; 2003 Aug; 103(3):203-12. PubMed ID: 12890607 [TBL] [Abstract][Full Text] [Related]
9. Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Wind RD; Buitelaar RM; Dijkhuizen L Eur J Biochem; 1998 May; 253(3):598-605. PubMed ID: 9654055 [TBL] [Abstract][Full Text] [Related]
10. Domain B protruding at the third beta strand of the alpha/beta barrel in barley alpha-amylase confers distinct isozyme-specific properties. Rodenburg KW; Juge N; Guo XJ; Søgaard M; Chaix JC; Svensson B Eur J Biochem; 1994 Apr; 221(1):277-84. PubMed ID: 8168517 [TBL] [Abstract][Full Text] [Related]
11. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC; Yildiz ED; Sahin E; Mutlu O World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894 [TBL] [Abstract][Full Text] [Related]
12. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Rodenburg KW; Vallée F; Juge N; Aghajari N; Guo X; Haser R; Svensson B Eur J Biochem; 2000 Feb; 267(4):1019-29. PubMed ID: 10672010 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. Przylas I; Tomoo K; Terada Y; Takaha T; Fujii K; Saenger W; Sträter N J Mol Biol; 2000 Feb; 296(3):873-86. PubMed ID: 10677288 [TBL] [Abstract][Full Text] [Related]
14. Did cyclodextrin glycosyltransferases evolve from alpha-amylases? del-Rio G; Morett E; Soberon X FEBS Lett; 1997 Oct; 416(2):221-4. PubMed ID: 9369219 [TBL] [Abstract][Full Text] [Related]
15. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687 [TBL] [Abstract][Full Text] [Related]
16. Close evolutionary relatedness among functionally distantly related members of the (alpha/beta)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. Janecek S FEBS Lett; 1995 Dec; 377(1):6-8. PubMed ID: 8543020 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for the recognition of α-1,6-branched α-glucan by GH13_47 α-amylase from Rhodothermus marinus. Miyasaka Y; Yokoyama K; Kozono T; Kitano Y; Miyazaki T; Sakaguchi M; Nishikawa A; Tonozuka T Proteins; 2024 Aug; 92(8):984-997. PubMed ID: 38641972 [TBL] [Abstract][Full Text] [Related]
18. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Majzlová K; Pukajová Z; Janeček S Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816 [TBL] [Abstract][Full Text] [Related]
19. Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: evolutionary distance is a reflection of unrelated sequences. Janecek S FEBS Lett; 1994 Oct; 353(2):119-23. PubMed ID: 7926034 [TBL] [Abstract][Full Text] [Related]