These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8019146)

  • 1. Identification of N-terminal helix capping boxes by means of 13C chemical shifts.
    Gronenborn AM; Clore GM
    J Biomol NMR; 1994 May; 4(3):455-8. PubMed ID: 8019146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated procedure for the assignment of protein 1HN, 15N, 13C alpha, 1H alpha, 13C beta and 1H beta resonances.
    Friedrichs MS; Mueller L; Wittekind M
    J Biomol NMR; 1994 Sep; 4(5):703-26. PubMed ID: 7919955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete assignments of magnetic resonances of ribonuclease H from Escherichia coli by double- and triple-resonance 2D and 3D NMR spectroscopies.
    Yamazaki T; Yoshida M; Nagayama K
    Biochemistry; 1993 Jun; 32(21):5656-69. PubMed ID: 8389189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of 1JC alpha H alpha coupling constants as a probe for protein backbone conformation.
    Vuister GW; Delaglio F; Bax A
    J Biomol NMR; 1993 Jan; 3(1):67-80. PubMed ID: 8448436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure.
    Wishart DS; Sykes BD; Richards FM
    J Mol Biol; 1991 Nov; 222(2):311-33. PubMed ID: 1960729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database.
    Iwadate M; Asakura T; Williamson MP
    J Biomol NMR; 1999 Mar; 13(3):199-211. PubMed ID: 10212983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural information from NMR secondary chemical shifts of peptide alpha C-H protons in proteins.
    Dalgarno DC; Levine BA; Williams RJ
    Biosci Rep; 1983 May; 3(5):443-52. PubMed ID: 6882888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H, 15N, 13C and 13CO assignments and secondary structure determination of basic fibroblast growth factor using 3D heteronuclear NMR spectroscopy.
    Moy FJ; Seddon AP; Campbell EB; Böhlen P; Powers R
    J Biomol NMR; 1995 Nov; 6(3):245-54. PubMed ID: 8520218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix.
    Ikura M; Kay LE; Krinks M; Bax A
    Biochemistry; 1991 Jun; 30(22):5498-504. PubMed ID: 2036419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined use of 13C chemical shift and 1H alpha-13C alpha heteronuclear NOE data in monitoring a protein NMR structure refinement.
    Celda B; Biamonti C; Arnau MJ; Tejero R; Montelione GT
    J Biomol NMR; 1995 Feb; 5(2):161-72. PubMed ID: 7703700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13C(alpha) and 13C(beta) chemical shifts as a tool to delineate beta-hairpin structures in peptides.
    Santiveri CM; Rico M; Jiménez MA
    J Biomol NMR; 2001 Apr; 19(4):331-45. PubMed ID: 11370779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy.
    Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G
    J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical shifts provide fold populations and register of beta hairpins and beta sheets.
    Fesinmeyer RM; Hudson FM; Olsen KA; White GW; Euser A; Andersen NH
    J Biomol NMR; 2005 Dec; 33(4):213-31. PubMed ID: 16341751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
    Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM
    Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assignment of the 13C-NMR spectra of virgin and reactive-site modified turkey ovomucoid third domain.
    Robertson AD; Rhyu GI; Westler WM; Markley JL
    Biopolymers; 1990 Feb; 29(2):461-7. PubMed ID: 2331509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 13C chemical shifts of amino acids in aqueous solution containing organic solvents: application to the secondary structure characterization of peptides in aqueous trifluoroethanol solution.
    Thanabal V; Omecinsky DO; Reily MD; Cody WL
    J Biomol NMR; 1994 Jan; 4(1):47-59. PubMed ID: 8130641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database.
    Xu XP; Case DA
    J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry.
    Hodsdon ME; Cistola DP
    Biochemistry; 1997 Feb; 36(6):1450-60. PubMed ID: 9063893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.