These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 8019418)
1. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. Cui Z; Maruyama Y; Mikami B; Hashimoto W; Murata K J Mol Biol; 2007 Nov; 374(2):384-98. PubMed ID: 17936784 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609 [TBL] [Abstract][Full Text] [Related]
5. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
7. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nakamura S; Nakai R; Namba K; Kubo T; Wakabayashi K; Aono R; Horikoshi K Nucleic Acids Symp Ser; 1995; (34):99-100. PubMed ID: 8841571 [TBL] [Abstract][Full Text] [Related]
9. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Ko EP; Akatsuka H; Moriyama H; Shinmyo A; Hata Y; Katsube Y; Urabe I; Okada H Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):117-21. PubMed ID: 1359880 [TBL] [Abstract][Full Text] [Related]
11. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. Nagem RA; Rojas AL; Golubev AM; Korneeva OS; Eneyskaya EV; Kulminskaya AA; Neustroev KN; Polikarpov I J Mol Biol; 2004 Nov; 344(2):471-80. PubMed ID: 15522299 [TBL] [Abstract][Full Text] [Related]
13. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Gruber K; Klintschar G; Hayn M; Schlacher A; Steiner W; Kratky C Biochemistry; 1998 Sep; 37(39):13475-85. PubMed ID: 9753433 [TBL] [Abstract][Full Text] [Related]
14. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum. Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156 [TBL] [Abstract][Full Text] [Related]
15. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
16. Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Pons T; Naumoff DG; Martínez-Fleites C; Hernández L Proteins; 2004 Feb; 54(3):424-32. PubMed ID: 14747991 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
18. Catalytic mechanism of retaining alpha-galactosidase belonging to glycoside hydrolase family 97. Okuyama M; Kitamura M; Hondoh H; Kang MS; Mori H; Kimura A; Tanaka I; Yao M J Mol Biol; 2009 Oct; 392(5):1232-41. PubMed ID: 19646996 [TBL] [Abstract][Full Text] [Related]
19. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. Adachi W; Sakihama Y; Shimizu S; Sunami T; Fukazawa T; Suzuki M; Yatsunami R; Nakamura S; Takénaka A J Mol Biol; 2004 Oct; 343(3):785-95. PubMed ID: 15465062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]