These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 8019781)
1. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Nakanishi H; Okumura N; Umehara Y; Nishizawa NK; Chino M; Mori S Plant Cell Physiol; 1993 Apr; 34(3):401-10. PubMed ID: 8019781 [TBL] [Abstract][Full Text] [Related]
2. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production. Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693 [TBL] [Abstract][Full Text] [Related]
3. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Nakanishi H; Yamaguchi H; Sasakuma T; Nishizawa NK; Mori S Plant Mol Biol; 2000 Sep; 44(2):199-207. PubMed ID: 11117263 [TBL] [Abstract][Full Text] [Related]
4. Cloning and mapping of a putative barley NADPH-dependent HC-toxin reductase. Han F; Kleinhofs A; Kilian A; Ullrich SE Mol Plant Microbe Interact; 1997 Mar; 10(2):234-9. PubMed ID: 9057330 [TBL] [Abstract][Full Text] [Related]
5. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice. Kobayashi T; Nakanishi H; Takahashi M; Kawasaki S; Nishizawa NK; Mori S Planta; 2001 Apr; 212(5-6):864-71. PubMed ID: 11346963 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867 [TBL] [Abstract][Full Text] [Related]
7. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Okumura N; Nishizawa NK; Umehara Y; Ohata T; Nakanishi H; Yamaguchi T; Chino M; Mori S Plant Mol Biol; 1994 Jul; 25(4):705-19. PubMed ID: 8061321 [TBL] [Abstract][Full Text] [Related]
8. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities. Namba K; Murata Y Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995 [TBL] [Abstract][Full Text] [Related]
9. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Koike S; Inoue H; Mizuno D; Takahashi M; Nakanishi H; Mori S; Nishizawa NK Plant J; 2004 Aug; 39(3):415-24. PubMed ID: 15255870 [TBL] [Abstract][Full Text] [Related]
10. A specific transporter for iron(III)-phytosiderophore in barley roots. Murata Y; Ma JF; Yamaji N; Ueno D; Nomoto K; Iwashita T Plant J; 2006 May; 46(4):563-72. PubMed ID: 16640594 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. Ogo Y; Itai RN; Nakanishi H; Inoue H; Kobayashi T; Suzuki M; Takahashi M; Mori S; Nishizawa NK J Exp Bot; 2006; 57(11):2867-78. PubMed ID: 16887895 [TBL] [Abstract][Full Text] [Related]
12. Molecular analysis of the barley ( Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Yamauchi D; Zentella R; Ho TH Planta; 2002 Jun; 215(2):319-26. PubMed ID: 12029482 [TBL] [Abstract][Full Text] [Related]
13. [Responses to iron-deficiency stress by graminaceous plants]. Itai RN; Nishizawa NK Tanpakushitsu Kakusan Koso; 2007 May; 52(6 Suppl):606-11. PubMed ID: 17566362 [No Abstract] [Full Text] [Related]
14. PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy. Ranford JC; Bryce JH; Morris PC J Exp Bot; 2002 Jan; 53(366):147-8. PubMed ID: 11741051 [TBL] [Abstract][Full Text] [Related]
15. [Cloning and partial characteristics of the barley D-hordein sequence]. Pokrovskaia OV; Mil'shina NV; Anan'ev EV Genetika; 1990 Jul; 26(7):1258-68. PubMed ID: 1699841 [TBL] [Abstract][Full Text] [Related]
16. Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Emanuel C; Weihe A; Graner A; Hess WR; Börner T Plant J; 2004 May; 38(3):460-72. PubMed ID: 15086795 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Ay N; Clauss K; Barth O; Humbeck K Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():121-35. PubMed ID: 18721317 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Tanaka Y; Chiba K; Maeda M; Maeshima M Biochem Biophys Res Commun; 1993 Feb; 190(3):1110-4. PubMed ID: 8382487 [TBL] [Abstract][Full Text] [Related]
19. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Higuchi K; Suzuki K; Nakanishi H; Yamaguchi H; Nishizawa NK; Mori S Plant Physiol; 1999 Feb; 119(2):471-80. PubMed ID: 9952442 [TBL] [Abstract][Full Text] [Related]
20. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Negishi T; Nakanishi H; Yazaki J; Kishimoto N; Fujii F; Shimbo K; Yamamoto K; Sakata K; Sasaki T; Kikuchi S; Mori S; Nishizawa NK Plant J; 2002 Apr; 30(1):83-94. PubMed ID: 11967095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]