BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 8020337)

  • 1. Role of endothelium-derived relaxing factor on vascular reactivity in endotoxin-induced shock.
    Yen MH; Chen SJ; Wu CC
    Chin J Physiol; 1993; 36(4):225-31. PubMed ID: 8020337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of ex vivo vascular reactivity in intraperitoneal sepsis.
    Chen SJ; Wu CC; Yen MH
    J Cardiovasc Pharmacol; 1994 Nov; 24(5):786-93. PubMed ID: 7532757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential contribution of endothelial function to vascular reactivity in conduit and resistance arteries from deoxycorticosterone-salt hypertensive rats.
    White RM; Rivera CO; Davison CB
    Hypertension; 1996 Jun; 27(6):1245-53. PubMed ID: 8641731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of halothane on phenylephrine-induced vascular smooth muscle contractions in endotoxin-exposed rat aortic rings.
    Grissom TE; Bina S; Hart J; Muldoon SM
    Crit Care Med; 1996 Feb; 24(2):287-93. PubMed ID: 8605803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin.
    Fleming I; Julou-Schaeffer G; Gray GA; Parratt JR; Stoclet JC
    Br J Pharmacol; 1991 May; 103(1):1047-52. PubMed ID: 1678981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-independent activation of soluble guanylyl cyclase contributes to endotoxin shock in rats.
    Wu CC; Chen SJ; Yen MH
    Am J Physiol; 1998 Oct; 275(4):H1148-57. PubMed ID: 9746461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent vascular activities of endothelin-like peptides in the isolated superior mesenteric arterial bed of the rat.
    Douglas SA; Hiley CR
    Br J Pharmacol; 1990 Sep; 101(1):81-8. PubMed ID: 2282471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro femoral arterial responses to vasoconstrictor and vasodilator agents in endotoxin shock.
    Zhou Z; Price JM; Sutton ET; Baker CH
    Life Sci; 1994; 54(1):9-16. PubMed ID: 8255169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of noise on blood pressure and vascular reactivities.
    Wu CC; Chen SJ; Yen MH
    Clin Exp Pharmacol Physiol; 1992 Dec; 19(12):833-8. PubMed ID: 1473299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats.
    Orshal JM; Khalil RA
    Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1013-23. PubMed ID: 15142856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of endotoxin in vivo on endothelial and smooth-muscle function in rabbit and rat aorta.
    Umans JG; Wylam ME; Samsel RW; Edwards J; Schumacker PT
    Am Rev Respir Dis; 1993 Dec; 148(6 Pt 1):1638-45. PubMed ID: 8256913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-arginine induces relaxation of small mesenteric arteries from endotoxin-treated rats.
    Schneider F; Schott C; Stoclet JC; Julou-Schaeffer G
    Eur J Pharmacol; 1992 Feb; 211(2):269-72. PubMed ID: 1612111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyporesponsiveness to Ca2+ of aortic smooth muscle in endotoxin-treated rats: no-dependent and -independent in vitro mechanisms.
    Ho KH; Kwan CY; Bourreau JP
    Res Commun Mol Pathol Pharmacol; 1996 Jun; 92(3):275-84. PubMed ID: 8827826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries.
    Wu CC; Chen SJ; Garland CJ
    Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of smooth muscle function of rat thoracic aorta in an endothelium-independent manner by long-term administration of N(G)-nitro-L-arginine methyl ester.
    López RM; Ortíz CS; Ruíz A; Vélez JM; Castillo C; Castillo EF
    Fundam Clin Pharmacol; 2004 Dec; 18(6):669-77. PubMed ID: 15548238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of vasodilatory effect of berberine in rat mesenteric artery.
    Chiou WF; Yen MH; Chen CF
    Eur J Pharmacol; 1991 Oct; 204(1):35-40. PubMed ID: 1666562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.