These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8020426)

  • 1. Air-interface cultures of guinea pig airway epithelial cells: effects of active sodium and chloride transport inhibitors on bioelectric properties.
    Robison TW; Kim KJ
    Exp Lung Res; 1994; 20(2):101-17. PubMed ID: 8020426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual effect of nitrogen dioxide on barrier properties of guinea pig tracheobronchial epithelial monolayers cultured in an air interface.
    Robison TW; Kim KJ
    J Toxicol Environ Health; 1995 Jan; 44(1):57-71. PubMed ID: 7823330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of tight monolayers of guinea pig airway epithelial cells cultured in an air-interface: bioelectric properties.
    Robison TW; Dorio RJ; Kim KJ
    Biotechniques; 1993 Sep; 15(3):468-73. PubMed ID: 8217160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of airway epithelial Na+,K(+)-ATPase activity by NO2 and protective role of nordihydroguaiaretic acid.
    Robison TW; Kim KJ
    Am J Physiol; 1996 Feb; 270(2 Pt 1):L266-72. PubMed ID: 8779996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered ion transport and responsiveness to methacholine and hyperosmolarity in air interface-cultured guinea-pig tracheal epithelium.
    Fedan JS; Wu DX; Van Scott MR
    J Pharmacol Toxicol Methods; 2007; 55(2):135-43. PubMed ID: 16793290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adrenergic regulation of ion transport across adult alveolar epithelial cells: effects on Cl- channel activation and transport function in cultures with an apical air interface.
    Jiang X; Ingbar DH; O'Grady SM
    J Membr Biol; 2001 Jun; 181(3):195-204. PubMed ID: 11420606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Na-K-Cl cotransport in cultured canine airway epithelia: a [3H]bumetanide binding study.
    Haas M; Johnson LG; Boucher RC
    Am J Physiol; 1990 Oct; 259(4 Pt 1):C557-69. PubMed ID: 2221037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectric properties of fetal alveolar epithelial monolayers.
    O'Brodovich H; Rafii B; Post M
    Am J Physiol; 1990 Apr; 258(4 Pt 1):L201-6. PubMed ID: 2159225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of diphenylamine-2-carboxylate on sodium and chloride transport across bovine tracheal epithelium: studies in monolayers and in the native tissue.
    Durand J
    Comp Biochem Physiol A Comp Physiol; 1989; 94(3):447-53. PubMed ID: 2574095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectric properties of cultured epithelial monolayers from distal lung of 18-day fetal rat.
    Barker PM; Stiles AD; Boucher RC; Gatzy JT
    Am J Physiol; 1992 May; 262(5 Pt 1):L628-36. PubMed ID: 1590412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition by loperamide of chloride transport across canine cultured tracheal epithelium.
    Tamaoki J; Sakai N; Isono K; Takizawa T
    Eur J Pharmacol; 1990 Nov; 190(1-2):255-8. PubMed ID: 1963848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperosmolar solution effects in guinea pig airways. II. Epithelial bioelectric responses to relative changes in osmolarity.
    Wu DX; Johnston RA; Rengasamy A; Van Scott MR; Fedan JS
    J Pharmacol Exp Ther; 2004 Jan; 308(1):19-29. PubMed ID: 14566000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambroxol inhibits Na+ absorption by canine airway epithelial cells in culture.
    Tamaoki J; Chiyotani A; Yamauchi F; Takeuchi S; Takizawa T
    J Pharm Pharmacol; 1991 Dec; 43(12):841-3. PubMed ID: 1687582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Na+ transport in an air-liquid interface culture system.
    Johnson LG; Dickman KG; Moore KL; Mandel LJ; Boucher RC
    Am J Physiol; 1993 Jun; 264(6 Pt 1):L560-5. PubMed ID: 8333549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physiology of the tracheal epithelium].
    Durand J
    Arch Int Physiol Biochim; 1988 Sep; 96(4):A347-62. PubMed ID: 2463815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia.
    Boucher RC; Larsen EH
    Am J Physiol; 1988 Apr; 254(4 Pt 1):C535-47. PubMed ID: 3354651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of active Na+ and Cl- fluxes to net ion transport by alveolar epithelium.
    Kim KJ; Cheek JM; Crandall ED
    Respir Physiol; 1991 Aug; 85(2):245-56. PubMed ID: 1947462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i.
    Haas M; McBrayer DG
    Am J Physiol; 1994 May; 266(5 Pt 1):C1440-52. PubMed ID: 8203506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of ion transport across fetal pulmonary epithelial cells in monolayer culture.
    Rao AK; Cott GR
    Am J Physiol; 1991 Aug; 261(2 Pt 1):L178-87. PubMed ID: 1872411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.